Milling and Baking Test Results for Hard Winter Wheat Harvested in 2022

73rd Report on Wheat Quality Hard Winter Wheat Technical Board of the Wheat Quality Council

A coordinated effort by wheat breeders, producers, millers and bakers to improve wheat quality

This program was carried out in cooperation with the Wheat Quality Council, Lenexa, KS, The United States Department of Agriculture (USDA) - ARS, The Agricultural Experiment Stations of Colorado, Kansas, Montana, Nebraska, North Dakota, Oklahoma, South Dakota, and Texas, as well as private wheat breeding companies including Syngenta (AgriPro Wheat), Bayer (WestBred), Limagrain, BASF, and other collaborators from baking, grain trade, other firms and academic millina. organizations. This annual technical report was prepared by the USDA-ARS, Hard Winter Wheat Quality Laboratory in Manhattan, KS. The Wheat Quality Council (WQC) provides funds for the program with great effort and support from collaborators who run bake and other wheat end-use quality tests. Trade names, if used, are used to identify products. No endorsement is intended, nor is criticism implied of similar products not mentioned.

Downloading or printing of this report is available through the Wheat Quality Council (http://www.wheatqualitycouncil.org), if you are member of WQC or a registered participant of the annual WQC meeting. Otherwise, please contact:

> Dave G. Green The Wheat Quality Council P.O. Box 19539 Lenexa, KS 66285 Voice: (913) 634-0248 Email: <u>Dave.green.wqc@gmail.com</u> http://www.wheatqualitycouncil.org

2022

Milling and Baking Test Results for **Hard Winter Wheats**

Editor:	Yuanhong (Richard) Chen, Ph.D Research Food Technologist, Associate Director USDA-ARS-CGAHR Hard Winter Wheat Quality Laboratory 1515 College Ave. Manhattan, KS 66502
Co-Editor:	Bradford W. Seabourn, Ph.D Supervisory Research Chemist, Director USDA-ARS-CGAHR Hard Winter Wheat Quality Laboratory 1515 College Ave. Manhattan, KS 66502
Coordinator:	Dave Green Executive Vice President Wheat Quality Council P.O. Box 19539. Lenexa, KS 66285

The MISSION of the WHEAT QUALITY COUNCIL:

ADVOCATE THE DEVELOPMENT OF NEW WHEAT VARIETIES THAT IMPROVE THE VALUE OF WHEAT TO ALL PARTIES IN THE UNITED STATES SUPPLY CHAIN.

The GOAL of the WHEAT QUALITY COUNCIL:

IMPROVE THE VALUE OF ALL U. S. WHEAT CLASSES FOR PRODUCERS, MILLERS, AND PROCESSORS OF WHEAT.

TABLE OF CONTENTS

Description of the 2022 Testing Program1	
2022 WQC Hard Winter Wheat Entries & Breeding Programs2	
GIPSA Wheat Classification	
Wheat Breeder Plot and Entry Descriptions, Wheat and Flour Analytical,	
Physical Dough, and Bread Baking Data5	

NORTHERN UNIFORM GROWOUT

Northern Entries ······ 6
Description of Test Plots and Breeder Entries7
Wheat and Flour Data 12
Physical Dough Tests and Protein Analysis Data 14
Farinograms and Mixograms 16
Alveograms······ 20
Extensigrams ····· 22
C-Cell Images and Analysis
Cooperator Baking Statistics
Cooperator's Comments
Micro-Quality Analysis
SKCS Single Kernel Information 45
Wheat Protein 48
Flour Protein ······ 49
Mixograph Results ······ 51
Falling Number on Meals 54
Sedimentation Test 55

SOUTHERN UNIFORM GROWOUT

Southern Entries 5	56
Description of Test Plots and Breeder Entries 5	57
Wheat and Flour Data	54
Physical Dough Tests and Protein Analysis Data	58
Farinograms and Mixograms	72
Alveograms ······ 8	30
Extensigrams ······ 8	34
C-Cell Images and Analysis 8	38
Cooperator Baking Statistics) 2
Cooperator's Comments 10)5

Micro-Quality Analysis ·····	
SKCS Single Kernel Information	
Wheat Protein	
Flour Protein	
Mixograph Results	
Falling Number on Meals	
Sedimentation Test	

MONTANA

Montana Entries ·····	128
Description of Test Plots and Breeder Entries	129
Wheat and Flour Data	. 130
Physical Dough Tests and Protein Analysis Data	132
Farinograms and Mixograms	. 134
Alveograms	. 137
Extensigrams ······	
C-Cell Images and Analysis	·· 141
Cooperator Baking Statistics	. 143
Cooperator's Comments	. 156

2022 WQC MILLING AND BAKING SCORE

Milling and HWWQL Baking Scores160
Overall Quality Scores and Collaborators Average Baking Scores 161
Marketing Score Notes 162

ALKALINE NOODLE TEST

Polyphenol Oxidase Test ······ 165
Alkaline Noodle Making Procedures165
Noodle Dough Color and Noodle Texture Tests
Noodle Test Results ······ 167
Noodle Color and PPO Levels
Noodle Texture and Cooking Quality169

TORTILLA BAKING TEST

Summary	170
Results ·····	171

PROTEIN ANALYSIS

Flour Protein Analysis Procedures1	73
Protein Analysis Results 1	74

APPENDIX A ---- Credits and Methods

Milling, Sample Analysis and Report Preparation176
Wheat Breeders ······ 177
Baking Collaborators 179
Methods ······ 182
Principles of C-Cell Image Analysis
Collaborators' Baking Test Profiles186

APPENDIX B -- HWWQC Technical Board and Goals for HWW Breeders

HWWQC Technical Board 190
Mission, Policy, and Operating Procedure191
HWWQC Technical Board 192
Duties of the Technical Board192
Hard Winter Wheat Quality Evaluation and Advisory Committee 193
Outlined Goals for Hard Winter Wheat Breeders

APPENDIX C ---- Hard Red Winter Wheat Quality Targets

End-Use Quality Targets for Hard Red Winter Wheat198

APPENDIX D ---- Hard White Wheat Quality Targets

APPENDIX E ---- Meeting Minutes

APPENDIX F ---- Historical WQC Hard Winter Wheat Entries

Historical WQC Hard Winter Wheat Entries since 2001......206

Description of the 2022 Testing Program

Founded in 1949, this is the <u>73rd</u> year for the Hard Winter Wheat Milling and Baking Evaluation Program. This program is sponsored by the Wheat Quality Council and coordinated by the USDA-ARS Hard Winter Wheat Quality Laboratory (HWWQL) and Kansas State University Department of Grain Science and Industry. Wheat experimental lines and check varieties (including common check and internal check) were submitted by public and private breeding programs in the Great Plains hard winter wheat growing region. This technical report includes GIPSA wheat market classification, physical grain testing, milling, analytical, rheological, and bread baking results.

A total of 28 composite entries this year were grown in two different Uniform Growout Systems (Northern and Southern) and Montana. The Northern had 8 composite entries including 2 checks and 6 breeding lines from 4 breeding programs grown in 4 locations (ND, SD, NE and AP) and The Southern had 15 composite entries including 2 checks and 13 breeding lines from 8 breeding programs grown in 7 locations (AP, KH, LM, OK, CO, BF, and TB). Wheat samples were milled on the Miag Multomat mill in the Kansas State University Department of Grain Science and Industry (Methods, Appendix A). The flours were distributed to 17 cooperators (15 for bread baking, 1 for tortilla, and 1 for noodle) for end-product quality evaluation. The wheat physical and chemical tests, flour quality analysis, and dough rheological tests (Mixograph, Farinograph, Alveograph, and Extensigraph) were conducted by the HWWQL.

Also included in this report is alkaline noodle and protein analysis data generated by the HWWQL and Dr. Mike Tilley in Manhattan, KS, as well as tortilla data generated by Texas A&M University. Methods used to evaluate wheat lines are listed in Appendix A.

2022 WQC HWW Entries & Breeding Programs

Breeding Programs	Entry Number	Sample Identification
NORTHERN	22-2401	Jagalene_CK
	22-2402	SY Mounment_CK
	22-2403	19Nord-124_ND
	22-2404	SD15007-11_SD
	22-2405	SD18B025-8_SD
	22-2406	NE17443 NE
	22-2407	NE17441 NE
	22-2408	WB4727_WB
SOUTHERN	22-2409	SY Monument_CK
	22-2410	Jagalene_CK
	22-2411	LCH18-9027_LM
	22-2412	TX16M9216_TX
	22-2413	BASF7_BF
	22-2414	BASF12_BF
	22-2415	WB4523_WB
	22-2416	WB0433004_WB
	22-2417	OK18510_OK
	22-2418	OK16107125C-17HR-2_OK
	22-2419	OKP17D101A666_OK
	22-2420	KS18H111-3_KH
	22-2421	CO16SF027_CO
	22-2422	CO18D297R_CO
	22-2423	KS13DH0041-35_KM
MONTANA	22-2424	SY Monument_CK
	22-2425	Yellowstone_CK
	22-2426	MTFH19132_MT
	22-2427	MTS1908_MT
	22-2428	MTCL19151_MT

CK=Check; AP=Agripro (Syngenta); LM=Limagrain; WB=Westbred (Bayer); BF=BASF; KH= KSU-Hay; KM=KSU-Manhattan;

2022 Wheat Classification Results from GIPSA

ID	CL	DKG	тw	м	ODOR	НТ	DKT	FM	SHBN	DEF	CCL	WOCL	GRADE
22-2401	HRW	0.0	58.3	11.9	ОК	0.0	0.4	0.0	0.6	1.0	0.0	0.0	U.S. NO. 2 HRW, DKG 0.0%
22-2402	HRW	0.0	57.0	12.0	ОК	0.0	0.5	0.0	0.6	1.1	0.0	0.0	U.S. NO. 3 HRW, DKG 0.0%
22-2403	HRW	0.0	58.1	12.0	ОК	0.0	0.0	0.0	0.2	0.2	0.0	0.0	U.S. NO. 2 HRW, DKG 0.0%
22-2404	HRW	0.0	58.9	12.3	ок	0.0	0.6	0.0	0.4	1.0	0.0	0.0	U.S. NO. 2 HRW, DKG 0.0%
22-2405	HRW	0.0	58.8	12.0	ОК	0.0	0.0	0.0	0.2	0.2	0.0	0.0	U.S. NO. 2 HRW, DKG 0.0%
22-2406	HRW	0.1	57.1	12.0	ОК	0.0	1.4	0.0	0.4	1.8	0.0	0.0	U.S. NO. 3 HRW, DKG 0.1%
22-2407	HRW	0.0	59.5	12.2	ок	0.0	0.5	0.0	0.2	0.7	0.0	0.0	U.S. NO. 2 HRW, DKG 0.0%
22-2408	HRW	0.2	55.2	11.9	ок	0.0	0.8	0.0	0.6	1.4	0.0	0.0	U.S. NO. 4 HRW, DKG 0.2%
22-2409	HRW	0.0	60.2	10.9	ОК	0.0	0.0	0.0	0.6	0.6	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2410	HRW	0.1	62.2	10.9	ок	0.0	0.2	0.0	0.5	0.7	0.0	0.0	U.S. NO. 1 HRW,, DKG 0.1%
22-2411	HDWH	0.0	61.6	11.0	ок	0.0	0.0	0.0	0.2	0.2	0.0	2.0	U.S. NO. 1 HDWH, DKG 0.0%
22-2412	HRW	0.1	60.9	10.9	ок	0.0	0.0	0.0	0.3	0.3	0.0	0.0	U.S. NO. 1 HRW, DKG 0.1%
22-2413	HRW	0.0	60.9	10.7	ок	0.0	0.0	0.0	0.4	0.4	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2414	HRW	0.0	61.8	10.9	ок	0.0	0.2	0.0	0.5	0.7	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2415	HRW	0.1	60.3	10.7	ОК	0.0	0.0	0.0	0.8	0.8	0.0	0.0	U.S. NO. 1 HRW, DKG 0.1%
22-2416	HRW	0.0	60.2	10.8	ок	0.0	0.0	0.0	0.5	0.5	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2417	HRW	0.0	62.1	10.9	ок	0.0	0.2	0.0	0.2	0.4	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2418	HRW	0.0	61.7	10.8	ок	0.0	0.0	0.0	0.3	0.3	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2419	HRW	0.0	61.8	10.7	ок	0.0	0.5	0.0	0.3	0.8	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2420	HRW	0.0	61.2	10.7	ок	0.0	0.0	0.0	0.3	0.3	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2421	HRW	0.0	61.2	10.6	ок	0.0	0.1	0.0	0.4	0.5	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2422	HRW	0.0	62.2	10.8	ок	0.0	0.0	0.0	0.5	0.5	0.0	0.3	U.S. NO. 1 HRW, DKG 0.0%
22-2423	HRW	0.0	60.9	10.5	ок	0.0	0.3	0.0	0.4	0.7	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2424	HRW	0.0	63.2	9.6	ок	0.0	0.0	0.0	0.9	0.9	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2425	HRW	0.0	62.8	9.9	ок	0.0	0.0	0.0	0.6	0.6	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2426	HRW	0.0	62.1	9.3	ок	0.0	0.0	0.0	1.0	1.0	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2427	HRW	0.0	64.4	9.5	ок	0.0	0.0	0.0	0.6	0.6	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%
22-2428	HRW	0.0	64.0	9.3	ок	0.0	0.0	0.0	0.6	0.6	0.0	0.0	U.S. NO. 1 HRW, DKG 0.0%

GIPSA Wheat Market Classification

Cl = Wheat class, DKG = Dockage (%), TW = Test weight (lb/bushels), DKT = Damaged kernels total (%), FM = Foreign materials (%), SHBN = Shrunken and broken kernels (%), DEF = Defects (%), CCL = Contrasting classes (%), WOCL = wheat of other classes. XWHT = mixed wheat

Wheat Breeder Plot and Entry Descriptions, Wheat and Flour Analytical, Physical Dough, and Bread Baking Data

NORTHERN GROWOUT

22-2401	Jagalene_CK
22-2402	SY Mounment_CK
22-2403	19Nord-124_ND
22-2404	SD15007-11_SD
22-2405	SD18B025-8_SD
22-2406	NE17443_NE
22-2407	NE17441_NE
22-2408	WB4727_WB

CK=Check; ND=North Dakota; SD=South Dakota; WB =Westbred (Bayer); NE=Nebraska.

Description of Test Plots and Breeder Entries

Northern Growout (ND, SD, NE, and WB)

NORTH DAKOTA by Francois Marais and Bradley Bisek

Growing Location & Conditions

The NDSU WQC grow-outs were located at the NDSU Agronomy Seed Farm (ASF) in Casselton, ND, approximately 20 miles west of Fargo. The grow-out strips (4' x 126') were seeded on Sept. 23rd, 2021, into un-tilled soybean stubble. Timely rainfall towards the end of the summer in 2021 had helped ease drought conditions in the region, and promoted good plant establishment after seeding. The winter did not produce significant snow amounts, yet it did produce many cold temperature streaks like in previous years. Although there were many concerns for potential winter kill, we did not see any significant winter kill in the WQC strips. The 2022 spring growing season was cool and incredibly wet. Many other spring crops were long delayed in seeding and were greatly affected by the dryer conditions later in the summer. However, the winter wheat plants were able to use the cool temperatures and moisture to get a great start and reestablished very well. Urea was applied at a rate of 260 lbs/A (120 lbs N) by the ASF on May 17th, 2022. The pesticide Wolverine Advanced was spraved on May 27th at the wheat jointing stage, to control weed growth. On June 15th, the insecticide Province II was applied via aerial application to combat grasshopper infestation. The WQC strips were harvested on July 27th, 2022. Seed quality appeared to be adequate among the entries, as dry conditions late in the summer provided good ripening and proper maturation of the crop. Rainfall became rather scarce in July through August, making harvest relatively simple and successful. Below are the yields for the harvested strips at Casselton.

Entry Name	Yield (lbs)
Jagalene	66.5
SY Monument	72.5
19NORD-124	80.2
SD15007-11	83.2
SD18B025-8	86.7
NE17443	76.3
NE17441	75.9
WB4727	69.7
20NORD-148 - excluded	74.3
SD15007-5 – excluded	87.0
NE18573 - excluded	75.4

19NORD-124

19NORD-124 is an NDSU experimental line scheduled for pre-release in 2023. 19NORD-124 is a doubled haploid derived line of a NDSU winter wheat project cross (15K590, Pedigree: *Crux (Fhb1,5A)/Nord1401*). 19NORD-124 is slightly shorter than the cultivar Jerry, although has shown to have generally good standability. 19NORD-124 has very good winter survival ratings, and has performed well in grain yield in North Dakota. In the NDSU winter wheat project disease screenings, 19NORD-124 has shown to have adequate resistance to both leaf and stem rust races prevalent in North Dakota. *Fhb1, Lr34/Yr18*, and *tsn1* are among confirmed DNA markers possessed by 19NORD-124. In 2023, 19NORD-124 will be included in regional variety trials in ND, SD, & MN, as well as another year of assessment in the NRPN trial.

SOUTH DAKOTA by Sunish Sehgal

Growing Location and Conditions

A total of 9 entries with two checks (Jagalene and SY Monument) were evaluated under the 2022 Northern Wheat Quality Council (WQC) grow-outs. At Brookings (SD), all entries were timely planted on September 29, 2021, as 150' long and 5' wide strips (7-rows) in oat stubble (no-till). A starter fertilizer 10-34-0 (10 gallons/ac) was applied at seeding. All entries had uniform emergence and good growth going into winter. No visible winter kill was observed. In spring, 28-0-0 (40 gallons/acre) fertilizer was stream-bar applied at Feekes 5 and the strips were also sprayed with 13 oz Bromac + 13 oz Puma. Good spring moisture supported very good tillering however, the majority of South Dakota experienced a severe drought in late summer of 2022 and the test weight was negatively impacted in the grow-outs at Brookings, SD. The grow-outs were harvested on August 3rd, 2022. The grain protein content ranged from 13.1% to 14.7% and the test weight ranged from 53.4 lb/bu – 58.8 lb/bu among the 11 entries.

SD15007-11

SD15007-11 was developed from a threeway cross Art/SD07184//Ideal and it has medium-tall height and late maturity similar to Ideal. It has a very good winter hardiness. SD15007-11 has been evaluated in 28 environments over two years in South Dakota Crop Performance Trials. Overall, SD15007-11 ranked 8th in eastern, 13th in central, and 14th in western SD locations among 29 entries, demonstrating a good yield potential. It has an average test weight and average grain protein concentration. SD15007-11 has above-average tolerance to FHB and is moderately resistant to leaf rust, stem rust, dwarf bunt, and hessian fly. SD15007-11 was rated overall good milling quality and acceptable baking quality. Across multiple trial locations (2019), its milling quality parameters (average flour yield 67.5 %), mixograph mix time (mins) of 5.0, and mix tolerance of 4.0 and baking quality parameters (average flour yield 65.0%, mix time 3.3 and mix tolerance 3.5, average loaf volume 890 cm³, and specific volume 6.0 cc/g).

SD18B025-8

SD18B025-8 was developed from the cross X120032 (OK07719W/SD07W083-4//SD07W053/3/SD09161). It is a medium-tall variety (*Rht-B1b*) with medium maturity. It is high yielding line with good test weight and grain protein content. SD18B025-8 has been evaluated for 61-year locations to date in various trials. It demonstrated a good yield potential (ranked 3rd) in the 2021 USDA Northern Regional Performance Nursery (NRPN). In SDSU Advanced and Elite yield trials in 2019 and 2020 where SD18B025-8 ranked 3rd and 8th, respectively. In South Dakota Crop Performance Trials across 28 environments over 2 years SD18B025-8 ranked 1st in eastern SD, 2nd in central SD, and 29th in western SD. It was rated resistant to leaf rust and stem rust and tolerant to stripe rust. SD18B025-8 has average milling characteristics but good baking characteristics in in-house and USDA evaluations. Across multiple trial locations (2019), its milling quality parameters (average flour yield 66.6 %), mixograph mix time of 4.7 and mix tolerance of 4.0 and baking quality parameters (average loaf volume 900 cm³ and specific volume 6.1 cc/g) were better than Winner (average flour yield 65.0%, mix time 3.3 and mix tolerance 3.5, average loaf volume 890 cm³, and specific volume 6.0 cc/g).

East	tern So	outh Dak	ota (202	1 and 2	2022)		Cer	tral So	outh Dak	ota (202	1 and 2	2022)	
		2022			2 year				2022		2 year		
Variety	Yield	Test Wt	Protein	Yield	Test Wt	Protein	Variety	Yield	Test Wt	Protein	Yield	Test Wt	Protein
SD18B025-8	65.7	59.5	13.8	69.0	60.3	13.5	SY Wolverine	71.3	59.6	13.9	73.6	60.0	13.9
SD17B210-2	63.4	57.7	14.3	67.9	58.9	14.1	SD18B025-8	71.2	59.3	14.3	72.2	59.8	14.4
SD Midland	62.4	59.0	13.6	67.4	59.9	13.1	AP Clair	69.8	59.4	14.2	71.5	59.8	14.1
SD17B032-1	63.6	59.0	13.9	66.6	60.0	13.6	CP7017AX	71.4	59.1	13.4	71.4	59.3	13.3
SD Andes	61.3	58.9	13.5	66.6	60.1	13.1	WB4309	69.4	58.4	14.1	71.2	58.9	14.1
SD15007-5	62.0	59.6	13.8	66.3	60.7	13.2	SD Andes	70.4	60.0	14.0	71.1	60.6	14.0
AP Clair	60.9	58.9	13.9	66.2	59.7	13.4	LCS Steel AX	68.7	58.6	13.4	70.5	59.1	13.4
SD15007-11	60.4	59.2	14.0	65.6	60.2	13.4	AP Bigfoot	68.3	58.8	14.0	70.2	59.1	14.0
Ideal	59.4	58.9	13.9	65.4	60.3	13.3	Draper	68.0	58.3	14.2	69.9	58.6	14.2
WB4309	59.5	58.3	13.7	65.3	59.3	13.4	Winner	64.7	59.3	14.5	69.1	59.7	14.2
Winner	60.8	58.4	13.8	65.2	59.5	13.3	CP7909	69.0	58.9	13.7	69.1	59.0	13.7
SD15035-2	61.0	58.9	14.1	64.9	60.3	13.7	SD Midland	67.2	59.4	14.3	68.9	59.9	14.1
CP7017AX	63.0	58.1	12.9	64.9	59.1	12.6	SD15007-11	65.2	59.5	14.2	68.5	59.9	14.1
SY Wolverine	60.6	58.8	13.6	64.8	59.6	13.4	SD15007-5	66.0	59.3	14.1	68.5	60.0	14.0
AP Bigfoot	61.3	58.6	13.5	64.1	59.5	13.3	SD15035-2	64.4	59.9	14.3	68.5	60.3	14.3
LCS Steel AX	59.8	58.3	13.0	64.1	58.8	12.6	LCS Helix AX	69.5	60.2	13.5	68.1	60.8	13.5
Draper	60.6	57.8	13.9	63.7	59.2	13.6	LCS Julep	67.1	60.3	14.4	68.1	61.2	14.5
CP7869	60.0	58.9	13.2	63.7	59.6	12.7	SD17B032-1	65.6	58.7	14.3	67.6	59.3	14.4
Redfield	58.8	58.5	14.4	63.4	59.6	14.0	AP 18AX	66.5	58.8	13.6	67.5	58.9	13.7
LCS Helix AX	60.7	58.8	13.3	63.2	60.2	12.8	Ideal	63.7	59.4	14.3	67.5	59.7	14.3
CP7909	59.4	59.8	13.3	62.0	60.4	13.1	MS Iceman	64.6	60.2	14.7	66.7	60.7	15.0
LCS Julep	59.5	60.1	14.1	61.8	61.4	13.8	SD17B210-2	67.5	57.6	14.8	66.4	58.1	15.0
AP 18AX	58.4	57.8	13.6	61.2	58.9	13.3	Crescent AX	68.6	59.3	13.5	65.7	60.0	13.9
Crescent AX	58.6	58.7	13.4	59.7	59.8	13.4	CP7869	64.0	59.2	14.0	65.5	59.4	13.9
LCS Photon AX	59.9	59.5	14.5	58.6	60.3	14.2	LCS Chrome	64.2	58.1	14.8	65.5	59.0	14.8
MS Iceman	56.8	60.2	14.9	58.5	61.1	14.5	Redfield	66.4	58.3	14.6	65.4	59.2	14.6
Expedition	57.4	58.9	14.5	58.5	60.0	14.1	Expedition	63.2	59.0	14.6	64.0	59.6	14.5
LCS Chrome	55.0	58.2	14.6	58.2	59.3	14.2	CP7050AX	64.0	60.4	14.5	63.4	60.9	14.4
CP7050AX	56.6	59.3	14.2	56.5	60.2	14.1	LCS Photon AX	63.0	60.4	14.7	62.5	60.9	14.6
Trial Average	59.8	58.7	13.8	63.6	59.9	13.5	Trial Average	66.5	59.1	14.1	68.2	59.7	14.2
LSD	1.7	0.5	0.3	1.7	0.3	0.2	LSD	2.9	0.9	0.3	2.3	0.4	0.2
CV	4.6	1.2	3.6	6.1	1.2	3.7	CV	7.8	1.9	3.2	7.9	1.6	3.5

Table 1. Yield, test weight, and grain protein content of some of the lines tested in the South Dakotawinter wheat variety performance trial (eastern and central South Dakota, 2021 and 2022).

NEBRASKA by Katherine Frels

2022 Nebraska WQC Samples:

Two Nebraska breeding lines were grown in the Northern uniform growout, NE17441 and NE17443. Six other breeding lines and the check lines Jagalene and SY Monument were grown in Lincoln, NE. No winterkilling was observed due to a mild winter. Growth and development were normal from winter to early spring, and moisture was close to average during this period. Anthesis occurred approximately and rainfall was minimal after anthesis. Drought conditions were present from anthesis to harvest. The plots were not sprayed with fungicides, and no diseases were observed. Lodging was minimal and plant height was slightly below normal. Plots were harvested later than normal, but due to the dry weather were not exposed to high humidity or heavy rains after maturity.

UNL Variety Descriptions

NE17441 is a hard red winter wheat derived from the cross Hitch/NE07409. NE17441 is broadly adapted to Nebraska environments and is moderately early. NE17441 has high yield potential especially in higher rainfall environments. It is resistant to SBMV, moderately resistant to stripe rust and FHB, and moderately susceptible to stem rust. It is susceptible to WSMV and a hollow stem variety susceptible to wheat stem sawfly. Protein is higher than average, with good test weight. The line has good water absorption, good dough characteristics, and a good baking evaluation.

NE17443 is hard red winter wheat derived from the cross NW07534/Freeman. NE17441 is targeted toward west central and Panhandle Nebraska. It is moderately early and has been a top yielding line in Western NE trials under drier conditions. It is moderately resistant to FHB, susceptible to SBMV and WSMV, and moderately susceptible stem, leaf and stripe rust. It is a hollow stem variety susceptible to wheat stem sawfly. The test weight and protein level are acceptable, but lower than NE17441. It has average dough characteristics and better baking scores than NE17441.

WESTBRED (Bayer) by Adam Bray

WB4727

WB4727 is a hard red winter wheat, with medium-late maturity, great straw strength, and good test weight. It has good winterhardiness and is well adapted to Montana and the western northern plains region with improved yields compared to Keldin. It is resistant to Wheat Streak Mosaic Virus. Internal quality testing indicates below average protein with above average functionality. WB4727 was released in 2021 as a high yielding product for Montana.

Northern Growout: 2022 (Small-Scale) Samples

Test entry number	22-2401	22-2402	22-2403	22-2404
Sample identification	Jagalene_CK	SY Monument_CK	19Nord-124_ND	SD15007-11_SD
•	0	at Data	I	
GIPSA classification	2 HRW	3 HRW	2 HRW	2 HRW
Test weight (lb/bu)	58.3	57.0	58.1	58.9
Hectoliter weight (kg/hl)	76.7	75.1	76.5	77.5
1000 kernel weight (gm)	31.2	30.0	31.6	31.2
Wheat kernel size (Rotap)				
Over 7 wire (%)	61.7	69.2	75.6	55.7
Over 9 wire (%)	37.2	30.4	24.2	43.3
Through 9 wire (%)	1.1	0.4	0.2	1.0
Single kernel (skcs) ^a				
Hardness (avg /s.d)	65.6/17.1	66.5/16.1	48.3/16.0	57.6/16.1
Weight (mg) (avg/s.d)	31.2/11.0	30.0/10.6	31.6/10.8	31.2/11.9
Diameter (mm)(avg/s.d)	2.67/0.42	2.62/0.39	2.68/0.38	2.59/0.36
Moisture (%) (avg/s.d)	12.0/0.4	12.5/0.4	12.0/0.4	12.3/0.4
SKCS distribution	03-10-27-60-01	02-06-23-69-01	17-29-29-25-03	06-20-30-44-01
Classification	Hard	Hard	Mixed	Hard
Wheat protein (12% mb) Wheat ash (12% mb)	13.6 1.64	12.8 1.59	12.8 1.54	13.3 1.65
				1100
	Milling and Flo	our Quality Data	a	
Flour yield (%, str. grade)				
Miag Multomat Mill	76.2	76.0	76.1	74.2
Quadrumat Sr. Mill	67.5	67.8	68.4	66.5
Flour moisture (%)	11.8	11.9	11.4	12.3
Flour protein (14% mb)	12.5	11.4	11.3	11.8
Flour ash (14% mb)	0.56	0.52	0.45	0.47
Rapid Visco-Analyser				
Peak time (min)	6.1	6.0	6.1	6.1
Peak viscosity (RVU)	189.5	197.6	193.4	187.1
Breakdown (RVU)	70.8	82.7	71.3	72.9
Final viscosity at 13 min (RVU)	230.9	228.3	234.6	222.5
Minolta color meter				
L*	90.51	90.69	90.99	91.09
a*	-1.31	-1.18	-1.50	-1.24
b*	9.14	8.56	9.29	8.12
PPO	0.594	0.385	0.232	0.665
Falling number (sec)	447	409	423	401
Damaged Starch				-
(AI%)	98.4	98.2	97.8	98.5
(AACC76-31)	8.2	8.1	7.7	8.2

^as.d. = standard deviation; skcs = Single Kernel Characterization System 4100.

Northern Growout: 2022 (Small-Scale) Samples (continued)

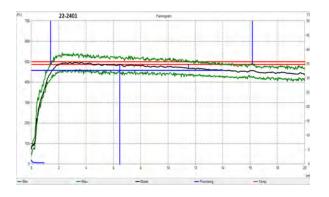
Test entry number	22-2405	22-2406	22-2407	22-2408
Sample identification	SD18B025-8_SD	NE17443_NE	NE17441_NE	WB4727_WB
•	Whe	at Data		
GIPSA classification	2 HRW	3 HRW	2 HRW	4HRW
Test weight (lb/bu)	58.8	57.1	59.5	55.2
Hectoliter weight (kg/hl)	77.4	75.2	78.3	72.7
1000 kernel weight (gm)	32.4	31.8	31.7	29.3
Wheat kernel size (Rotap)				
Over 7 wire (%)	71.3	73.2	69.6	57.6
Over 9 wire (%)	28.3	26.4	29.9	40.5
Through 9 wire (%)	0.4	0.4	0.5	1.9
Single kernel (skcs) ^a	00.0/45.4	50 5/47 0	50.0/40.0	50.0/40.0
Hardness (avg /s.d)	63.3/15.4	50.5/17.2	58.8/16.9	52.9/18.3
Weight (mg) (avg/s.d)	32.4/10.7 2.69/0.36	31.8/10.1 2.71/0.42	31.7/10.2 2.67/0.38	29.3/10.7 2.58/0.44
Diameter (mm)(avg/s.d)	12.0/0.5	12.2/0.4	12.3/0.4	12.1/0.4
Moisture (%) (avg/s.d) SKCS distribution	02-11-30-57-01	15-27-29-29-03	05-19-25-51-01	14-24-25-37-03
Classification	Hard	Mixed	Hard	Mixed
Classification	T la la	mixed	Tidid	i inixod
Wheat protein (12% mb)	13.7	13.6	13.4	13.3
Wheat ash (12% mb)	1.62	1.67	1.62	1.64
	1.02	1.07	1.02	-
	Milling and Fl	our Quality Data		
Flour yield (%, str. grade)		- / -		
Miag Multomat Mill	73.5	74.8	76.0	71.6
Quadrumat Sr. Mill	65.1	66.4	67.1	66.0
Flour moisture (%)	12.6	12.3	12.1	11.5
Flour protein (14% mb)	12.4	12.2	12.2	12.0
Flour ash (14% mb)	0.51	0.48	0.52	0.55
Rapid Visco-Analyser				
Peak time (min)	6.3	6.0	6.1	6.1
Peak viscosity (RVU)	202.1	181.6	188.9	194.3
Breakdown (RVU)	72.3	78.3	73.9	65.6
Final viscosity at 13 min (RVU)	238.4	210.1	223.1	247.8
Minolta color meter				
L*	90.55	91.10	90.56	90.64
a*	-1.20	-1.32	-1.12	-1.25
b*	8.07	8.55	8.28	8.91
PPO	0.689	0.721	0.760	0.657
Falling number (sec)	412	389	429	472
Damaged Starch				
(AI%)	98.0	97.7	98.1	97.7
(AACC76-31)	7.9	7.6	8.0	7.7

^as.d. = standard deviation; skcs = Single Kernel Characterization System 4100.

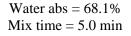
Northern Growout: Physical Dough Tests and Protein Analysis 2022 (Small-Scale) Samples

Test Entry Number	22-2401	22-2402	22-2403	22-2404
Sample Identification	Jagalene_CK	SY Mounment_CK	19Nord-124_ND	SD15007-11_SD
		MIXOGRAPH		
Flour Abs (% as-is)	71.0	69.4	66.2	67.8
Flour Abs (14% mb)	68.1	67.1	63.2	65.8
Mix Time (min)	5.0	9.0	3.0	6.0
Mix tolerance (0-6)	4	5	2	5
	F	ARINOGRAPH		
Flour Abs (% as-is)	63.3	64.4	64.0	64.9
Flour Abs (14% mb)	60.4	62.0	61.1	62.8
Peak time (min)	6.5	7.3	5.3	6.9
Mix stability (min)	14.8	16.3	7.3	18.6
Mix Tolerance Index (FU)	19	22	38	16
Breakdown time (min)	14.1	13.9	9.5	20.1
	A	LVEOGRAPH		
P(mm): Tenacity	111	139	91	146
L(mm): Extensibility	58	40	52	37
G(mm): Swelling index	16.9	14.0	16.0	13.5
W(10 ⁻⁴ J): strength (curve area)	277	277 239		239
P/L: curve configuration ratio	1.91	3.48	1.75	3.95
le(P200/P): elasticity index	65.7	52.0	44.0	0.0
	EX	KTENSIGRAPH		
Resist (BU at 45/90/135 min)	462/555/584	633/927/950	223/264/322	543/778/837
Extensibility (mm at 45/90/135 min)	156/158/139	127/124/105	150/164/149	157/138/147
Energy (cm ² at 45/90/135 min)	142/172/142	138/175/143	60/80/87	171/195/218
Resist max (BU at 45/90/135min)	733/898/839	889/1196/1182	287/360/440	883/1175/1207
Ratio (at 45/90/135 min)	3.0/3.5/4.2	5.0/7.5/9.1	1.5/1.6/2.2	3.5/5.6/5.7
	PRC	DTEIN ANALYS	IS	
HMW-GS Composition	1,2*, 17+18, 5+10	2*, 7+9, 5+10	2*, 7+9, 5+10	2*, 7+9, 5+10
TPP/TMP	1.11	1.00	1.01	0.95
	SEDI	MENTATION TE	ST	
Volume (ml)	62.1	59.1	43.2	62.2

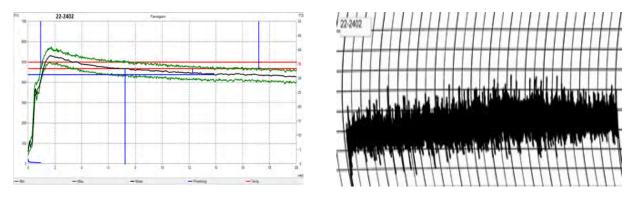
Northern Growout: Physical Dough Tests and Protein Analysis 2022 (Small-Scale) Samples (continued)

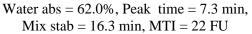

Test Entry Number	22-2405	22-2406	22-2407	22-2408
Sample Identification	SD18B025-8_SD	NHH17612_NE	NE17441_NE	WB4727_WB
	MIXO	GRAPH		
Flour Abs (% as-is)	70.1	69.4	69.7	70.3
Flour Abs (14% mb)	68.3	67.2	67.5	67.6
Mix Time (min)	5.0	5.3	5.5	3.4
Mix tolerance (0-6)	5	4	4	2
	FARIN	OGRAPH		
Flour Abs (% as-is)	65.3	64.9	65.0	63.7
Flour Abs (14% mb)	63.5	62.7	62.7	61.0
Peak time (min)	5.5	6.2	6.9	4.8
Mix stability (min)	12.3	11.4	18.6	8.1
Mix Tolerance Index (FU)	21	26	18	34
Breakdown time (min)	13.0	11.6	16.0	9.7
	ALVEC	OGRAPH		
P(mm): Tenacity	119	109	139	100
L(mm): Extensibility	78	87	59	64
G(mm): Swelling index	19.6	20.7	17.1	17.8
W(10 ⁻⁴ J): strength (curve area)	336	318	328	214
P/L: curve configuration ratio	1.53	1.25	2.36	1.56
le(P200/P): elasticity index	58.1	55.4	59.1	46.3
	EXTEN	SIGRAPH		
Resist (BU at 45/90/135 min)	411/525/561	390/551/626	507/635/808	306/359/386
Extensibility (mm at 45/90/135 min)	147/139/149	143/133/132	133/110/119	149/154/146
Energy (cm ² at 45/90/135 min)	109/131/151	98/124/138	117/108/150	80/96/99
Resist _{max} (BU at 45/90/135min)	580/753/821	535/738/865	690/828/1055	399/469/522
Ratio (at 45/90/135 min)	2.8/3.8/3.8	2.7/4.1/4.8	3.8/5.8/6.8	2.1/2.3/2.6
	PROTEIN	ANALYSIS		
HMW-GS Composition	2*, 7+9, 5+10	2*, 7+9, 5+10	2*, 7+8, 5+10	2*,20a+20b,5+10
TPP/TMP	1.07	1.02	0.86	1.08
	SEDIMENT	ATION TEST		
Volume (ml)	61.9	61.6	58.7	58.4

Physical Dough Tests – Farino and Mixo 2022 (Small Scale) Samples – Northern Growout


22-2401

Farinograms

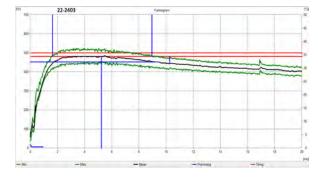

Mixograms



Water abs = 60.4%, Peak time = 6.5 min, Mix stab = 14.8 min, MTI = 19 FU

22-2401, Jagalene_CK

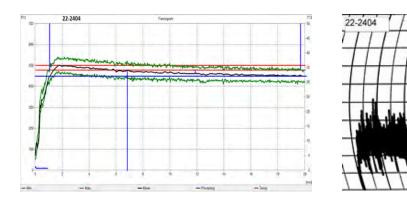
Water abs = 67.1%Mix time = 9.0 min


22-2402, SY Mounment_CK

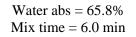
Physical Dough Tests – Farino and Mixo 2022 (Small Scale) Samples – Northern Growout (Continued)

22-2403

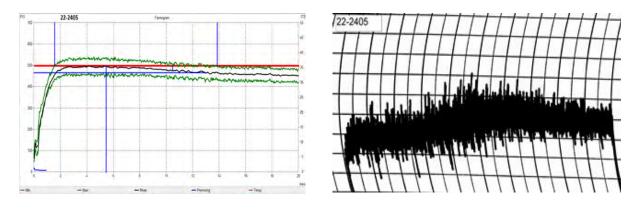
Farinograms


Mixograms




Water abs = 61.1%, Peak time = 5.3 min, Mix stab = 7.3 min, MTI = 38 FU

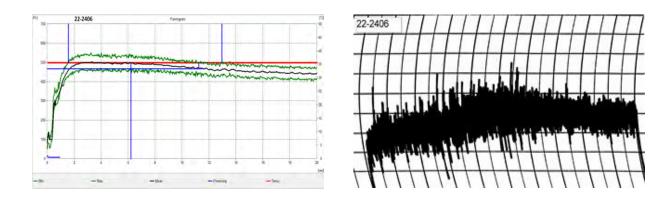
Water abs = 63.2%Mix time = 3.0 min

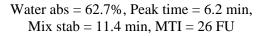

La Labora India

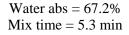
22-2404, SD15007-11_SD

Physical Dough Tests – Farino and Mixo 2022 (Small Scale) Samples – Northern Growout (Continued)

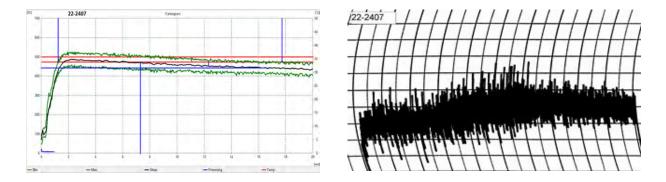
Farinograms


Mixograms




Water abs = 63.5%, Peak time = 5.5 min, Mix stab = 12.3 min, MTI = 21 FU

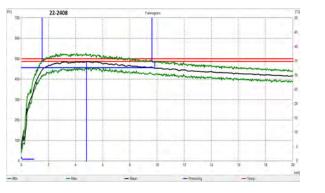
Water abs = 68.3%Mix time = 5.0 min

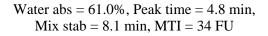


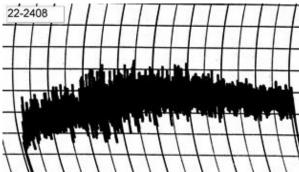
22-2406, NE17441_NE

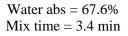
Physical Dough Tests – Farino and Mixo 2022 (Small Scale) Samples – Northern Growout (Continued)

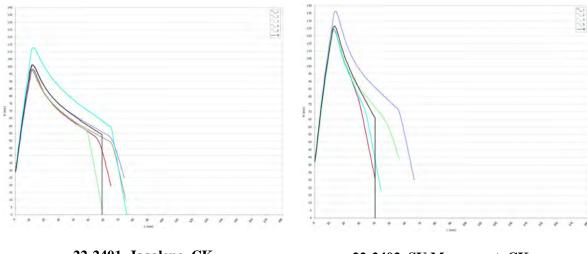
Farinograms

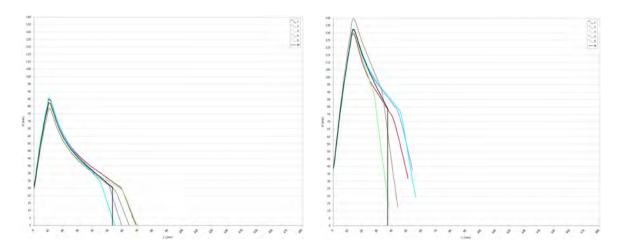

Mixograms




Water abs = 66.9%, Peak time = 7.0 min, Mix stab = 11.5 min, MTI = 21 FU

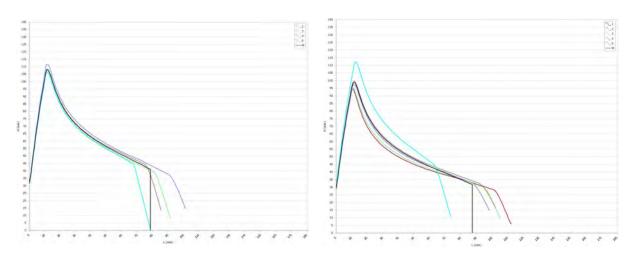

Water abs = 67.5% Mix time = 5.5 min



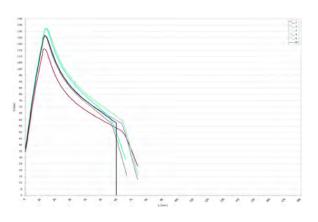


Physical Dough Tests - Alveograms 2022 (Small Scale) Samples – Northern Growout

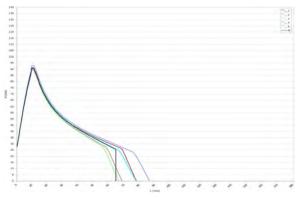
22-2401, Jagalene_CK P(mm H₂0) =111, L(mm) = 58, W(10E⁻⁴ J) = 277


22-2402, SY Monument_CK P(mm H₂0) =139, L(mm) = 40, W(10E⁻⁴ J) = 239

22-2403, 19NORD-124_ND P(mm H₂0) =91, L(mm) = 52, W(10E⁻⁴ J) = 170

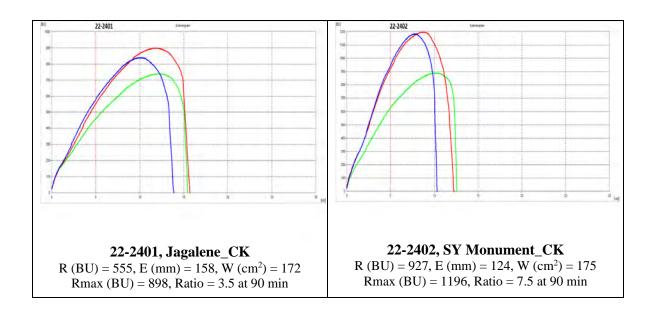

22-2404, SD15007-11_SD P(mm H₂0) =146, L(mm) = 37, W(10E⁻⁴ J) = 239

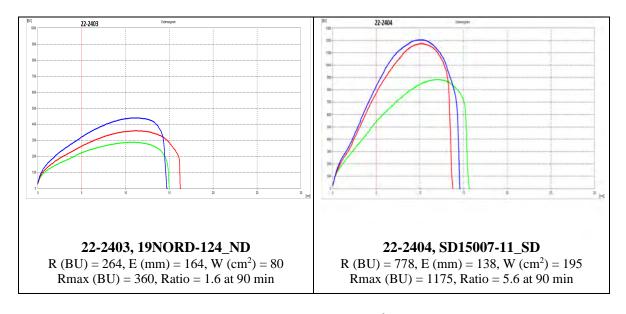
Physical Dough Tests - Alveograms 2022 (Small Scale) Samples – Northern Growout



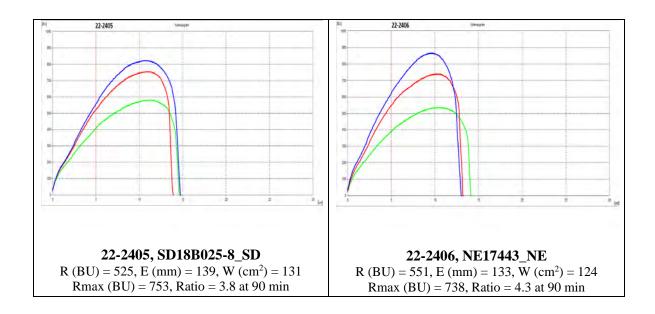
22-2405, SD18B025-8_SD P(mm H₂0) = 119, L(mm) = 78, W(10E⁻⁴ J) = 336

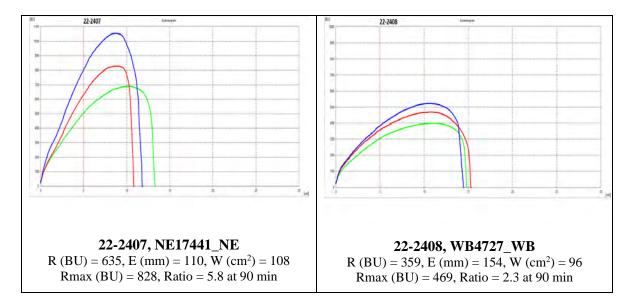
22-2406, NE17443_NE P(mm H₂0) = 109, L(mm) = 87, W(10E⁻⁴ J) = 318



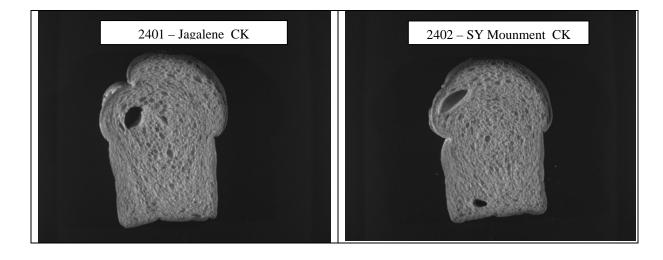

22-2407, NE17441_NE P(mm H₂0) = 139, L(mm) = 59, W(10E⁻⁴ J) = 328

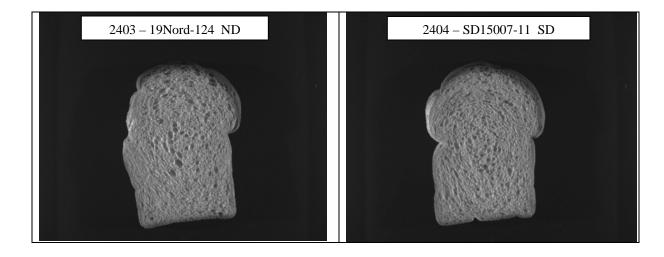
 $\label{eq:22-2408} \begin{array}{l} \textbf{22-2408, WB4727_WB} \\ P(mm \; H_20) = 100, \; L(mm) = 64, \; W(10 \text{E}^{\text{-4}} \; \text{J}) = 214 \end{array}$


Physical Dough Tests - Extensigrams 2022 (Small Scale) Samples – Northern Growout



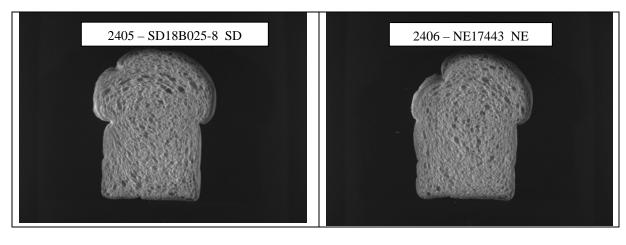
Notes: R (BU) = Resistance; E (mm) = Extensibility; W (cm²) = Energy; Rmax (BU) = Maximum resistance. Green = 45 min, Red = 90 min, and Blue = 135 min.


Physical Dough Tests - Extensigrams 2022 (Small Scale) Samples – Northern Growout

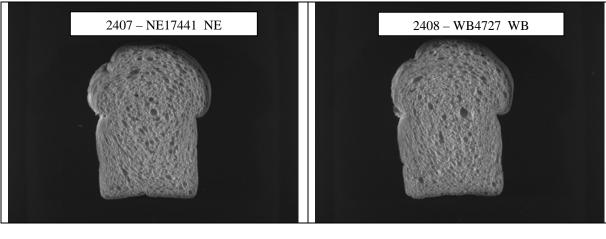


Notes: R (BU) = Resistance; E (mm) = Extensibility; W (cm²) = Energy; Rmax (BU) = Maximum resistance. Green = 45 min, Red = 90 min, and Blue = 135 min.

Northern Growout: C-Cell Bread Images and Analysis 2022 (Small-Scale) Samples



Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2401	6810	111	4115	0.410	1.985	8.490	1.863	-3.58
2402	6375	111	4072	0.410	1.843	6.518	1.850	-1.50



Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2403	6468	115	4030	0.415	1.978	4.300	1.750	-0.20
2404	6315	114	3976	0.410	1.918	6.070	1.948	3.65

Northern Growout: C-Cell Bread Images and Analysis 2022 (Small-Scale) Samples

Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2405	6704	113	3971	0.425	2.140	8.160	1.855	-7.35
2406	6448	115	4072	0.415	1.935	5.155	1.850	-6.40

Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2407	6548	113	4026	0.420	2.035	2.685	1.840	-8.80
2408	6525	113	4155	0.415	1.973	1.985	1.790	-5.55

3

Cooperator Means

4

5

mean=4.47

mean=4.47

6

EXCELLENT

22-2405

22-2407

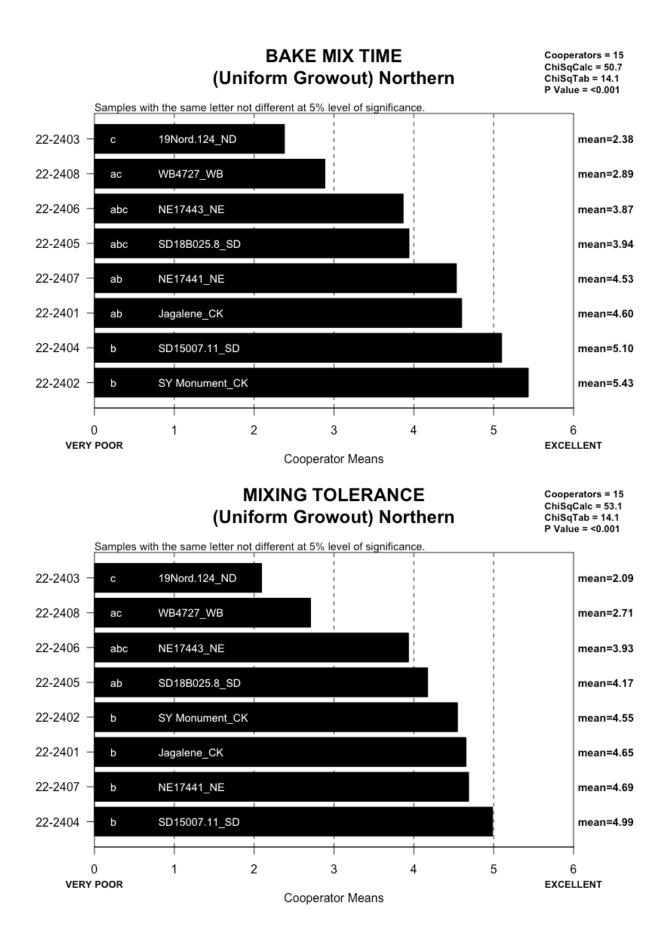
а

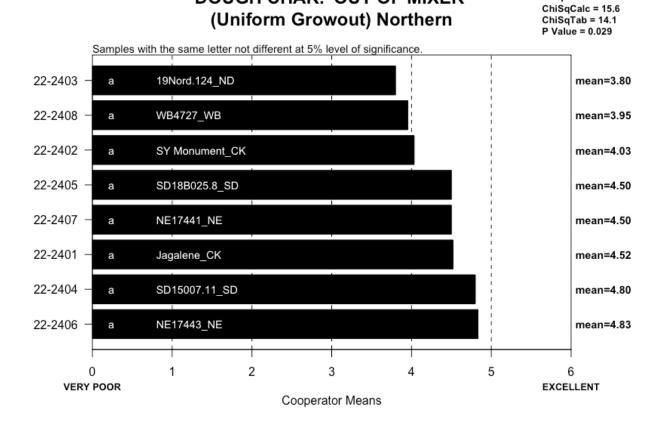
а

0 VERY POOR SD18B025.8_SD

2

NE17441_NE


1

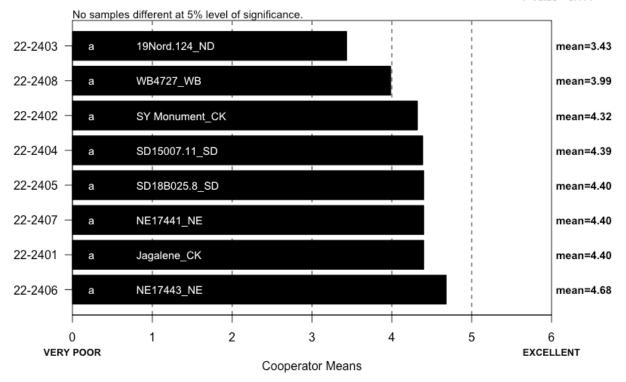

BAKE ABSORPTION, ACTUAL (14% MB) (Uniform Growout) Northern Cooperators A – O

IDCODE	ID	Α	в	с	D	Е	F	G	н	Т	J	к	L	М	Ν	0
22-2401	Jagalene_CK	59	63.7	67.2	65.6	68.7	64.0	60.4	56.1	65.8	63.6	60.4	70.4	68.1	65.0	61
22-2402	SY Monument_CK	58	64.5	65.4	67.1	67.8	65.0	60.2	59.7	65.4	65.0	62.0	71.4	67.1	64.3	62
22-2403	19Nord.124_ND	58	64.4	65.4	65.9	64.2	64.3	61.1	57.0	61.2	64.4	61.1	69.3	63.2	62.9	61
22-2404	SD15007.11_SD	59	65.7	64.4	67.8	67.7	66.5	62.8	60.0	64.7	65.8	62.8	70.6	65.8	64.5	63
22-2405	SD18B025.8_SD	59	65.0	66.4	68.6	67.7	68.0	63.5	60.7	65.9	66.6	63.5	69.7	68.3	64.5	64
22-2406	NE17443_NE	59	65.3	64.9	67.8	65.6	66.2	62.7	59.8	65.5	65.6	62.7	69.5	67.2	65.3	63
22-2407	NE17441_NE	59	67.4	66.1	67.5	66.0	66.5	62.7	59.8	66.5	65.1	62.7	66.7	67.5	66.1	63
22-2408	WB4727_WB	59	64.7	65.4	65.9	65.6	65.5	61.0	57.3	65.0	64.4	61.0	70.0	67.6	62.5	61

BAKE MIX TIME, ACTUAL (Uniform Growout) Northern Cooperators A – O

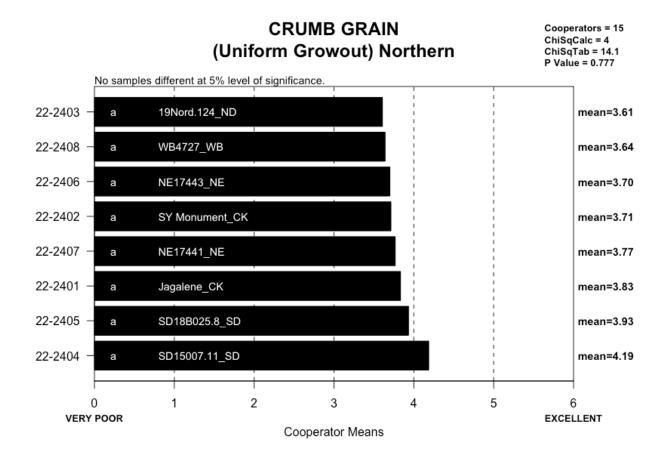
IDCODE	ID	Α	в	с	D	Е	F	G	н	Т	J	к	L	м	Ν	0
22-2401	Jagalene_CK	15	6.3	8.9	5.5	5.3	6.0	17	6	7.4	20	6.0	4.5	5.0	14	19
22-2402	SY Monument_CK	15	8.2	12.4	7.7	7.8	9.0	30	7	12.8	25	7.5	4.5	9.0	20	22
22-2403	19Nord.124_ND	5	3.5	4.2	3.1	3.3	3.3	7	4	3.5	8	5.0	3.5	3.0	5	7
22-2404	SD15007.11_SD	15	8.5	9.3	7.2	6.3	7.3	15	7	10.3	12	7.5	4.5	6.0	20	24
22-2405	SD18B025.8_SD	10	2.7	5.1	4.7	4.5	5.3	25	5	5.3	12	5.5	4.8	5.0	13	20
22-2406	NE17443_NE	12	4.1	6.9	4.9	4.3	5.0	11	4	6.5	10	6.0	4.3	5.3	8	20
22-2407	NE17441_NE	13	5.5	8.3	5.5	5.0	5.8	18	6	8.0	14	7.0	4.5	5.5	13	27
22-2408	WB4727_WB	7	3.5	5.3	2.6	3.5	3.5	11	4	4.3	8	5.0	3.5	3.4	10	10

DOUGH CHAR. 'OUT OF MIXER'


Cooperators = 15

DOUGH CHAR. 'OUT OF MIXER', DESCRIBED (Uniform Growout) Northern

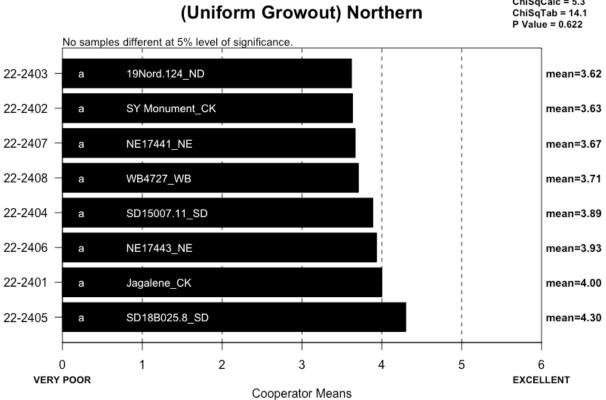
IDCODE	ID	Sticky	Wet	Tough	Good	Excellent
22-2401	Jagalene_CK	1	2	2	9	1
22-2402	SY Monument_CK	3	2	4	6	0
22-2403	19Nord.124_ND	3	2	0	10	0
22-2404	SD15007.11_SD	1	0	2	9	3
22-2405	SD18B025.8_SD	3	0	3	7	2
22-2406	NE17443_NE	0	1	1	11	2
22-2407	NE17441_NE	1	1	3	8	2
22-2408	WB4727_WB	3	2	2	8	0


DOUGH CHAR. 'AT MAKE UP' (Uniform Growout) Northern

Cooperators = 15 ChiSqCalc = 11.6 ChiSqTab = 14.1 P Value = 0.114

DOUGH CHAR. 'AT MAKE UP', DESCRIBED (Uniform Growout) Northern

IDCODE	ID	Sticky	Wet	Tough	Good	Excellent
22-2401	Jagalene_CK	3	1	3	7	1
22-2402	SY Monument_CK	2	0	5	7	1
22-2403	19Nord.124_ND	5	4	1	5	0
22-2404	SD15007.11_SD	2	0	4	8	1
22-2405	SD18B025.8_SD	1	0	3	8	3
22-2406	NE17443_NE	2	0	1	8	4
22-2407	NE17441_NE	2	0	5	6	2
22-2408	WB4727_WB	4	2	2	4	3



CRUMB GRAIN, DESCRIBED (Uniform Growout) Northern

IDCODE	ID	Open	Fine	Dense
22-2401	Jagalene_CK	9	4	2
22-2402	SY Monument_CK	5	5	5
22-2403	19Nord.124_ND	7	5	3
22-2404	SD15007.11_SD	6	7	2
22-2405	SD18B025.8_SD	11	2	2
22-2406	NE17443_NE	6	7	2
22-2407	NE17441_NE	7	4	4
22-2408	WB4727_WB	6	3	6

CELL SHAPE, DESCRIBED (Uniform Growout) Northern

IDCODE	ID	Round	Irregular	Elongated
22-2401	Jagalene_CK	8	6	1
22-2402	SY Monument_CK	8	4	3
22-2403	19Nord.124_ND	7	4	4
22-2404	SD15007.11_SD	4	8	3
22-2405	SD18B025.8_SD	5	7	3
22-2406	NE17443_NE	6	7	2
22-2407	NE17441_NE	7	5	3
22-2408	WB4727_WB	9	4	2

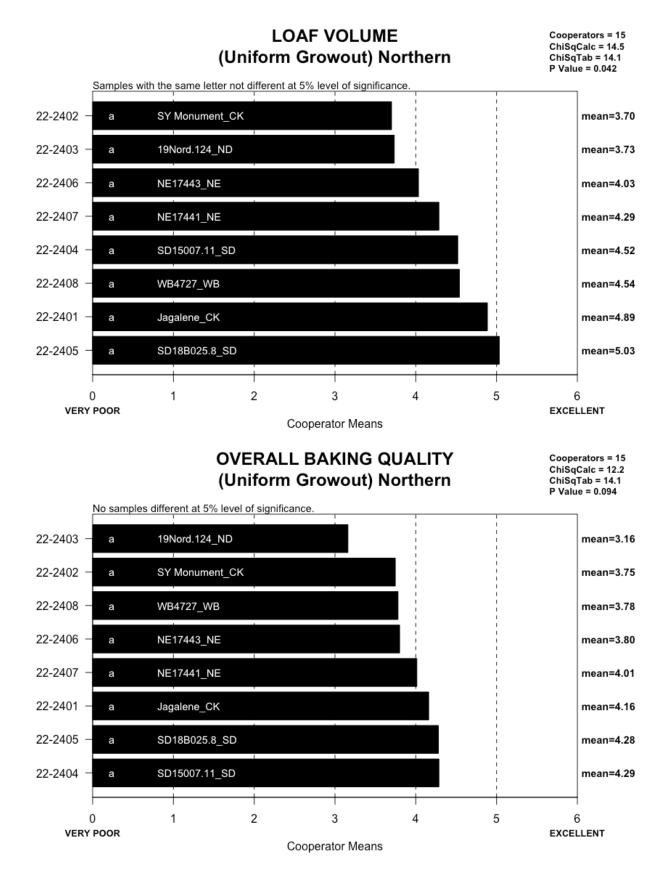
CRUMB TEXTURE

Cooperators = 15 ChiSqCalc = 5.3

CRUMB TEXTURE, DESCRIBED (Uniform Growout) Northern

IDCODE	ID	Harsh	Smooth	Silky
22-2401	Jagalene_CK	4	8	3
22-2402	SY Monument_CK	5	6	4
22-2403	19Nord.124_ND	4	8	3
22-2404	SD15007.11_SD	4	8	3
22-2405	SD18B025.8_SD	2	9	4
22-2406	NE17443_NE	4	9	2
22-2407	NE17441_NE	7	5	3
22-2408	WB4727_WB	5	8	2

CRUMB COLOR, DESCRIBED (Uniform Growout) Northern


IDCODE	ID	Gray	Dark_Yellow	Yellow	Dull	Creamy	White	Bright_White
22-2401	Jagalene_CK	0	1	1	4	6	3	0
22-2402	SY Monument_CK	0	0	3	5	5	2	0
22-2403	19Nord.124_ND	0	1	4	4	5	1	0
22-2404	SD15007.11_SD	0	0	3	2	6	4	0
22-2405	SD18B025.8_SD	0	0	2	2	5	6	0
22-2406	NE17443_NE	0	1	2	4	6	2	0
22-2407	NE17441_NE	0	0	2	4	8	1	0
22-2408	WB4727_WB	0	1	3	4	5	2	0

LOAF WEIGHT, ACTUAL (Uniform Growout) Northern Cooperators A – O

IDCODE	ID	Α	в	С	D	Е	F	G	н	1	J	к	L.	м	Ν	0
22-2401	Jagalene_CK	418	149.6	142.5	138.3	145.5	141.6	452.0	482.3	148.7	442	451	131.4	143.8	421.6	475
22-2402	SY Monument_CK	418	152.3	138.9	138.9	143.4	145.2	457.0	484.8	149.1	443	459	138.9	143.7	426.6	476
22-2403	19Nord.124_ND	420	149.7	142,9	138.7	141.7	141.9	444.5	483.2	149.0	432	454	135.4	141.6	425.3	466
22-2404	SD15007.11_SD	415	151.7	140.7	137.2	144.0	146.5	444.0	481.0	151.0	440	456	133.5	141,2	428.4	168
22-2405	SD18B025.8_SD	412	148.9	140.1	137.7	143.8	145,4	455.5	482.8	151.6	441	454	142.7	142.7	428.4	167
22-2406	NE17443_NE	419	150,4	140.0	138.2	145.2	144.2	446.0	484.2	151.2	439	455	137.6	142.8	429.6	472
22-2407	NE17441_NE	420	150.3	140.4	139.4	143.8	143.7	446.0	478.5	152.8	438	455	134.6	142.5	426.5	471
22-2408	WB4727_WB	420	152.2	144.0	138.2	146.6	143.0	484.5	481.0	152.4	429	458	134.5	145.1	428.2	468

LOAF VOLUME, ACTUAL (Uniform Growout) Northern Cooperators A – O

IDCODE	ID	А	в	С	D	Е	F	G	н	- 0	J	к	L	M	N	0
22-2401	Jagalene_CK	2950	981	885	956	1150	767	2164	2638	1020	2427	2805	855	785	2675	2897
22-2402	SY Monument_CK	2725	850	905	919	1025	712	1925	2225	915	2286	2711	680	720	2600	2751
22-2403	19Nord.124_ND	2675	869	953	863	925	713	2006	2388	935	2327	2409	840	825	2550	2515
22-2404	SD15007.11_SD	2975	988	870	955	1070	771	2136	2463	920	2345	2502	600	805	2925	2956
22-2405	SD18B025.8_SD	3000	998	1050	966	1080	796	2043	2438	975	2404	2583	975	830	2875	2956
22-2406	NE17443_NE	2750	969	928	888	975	761	1977	2313	925	2428	2490	940	755	2450	2751
22-2407	NE17441_NE	2925	979	1038	903	990	761	2055	2438	925	2346	2389	965	755	2600	2751
22-2408	WB4727_WB	2925	959	963	918	880	772	2212	2450	975	2454	2484	910	900	2600	2809

COOP.

22-2401 Jagalene_CK

- A. Strong dough, long mix, good volume, slightly open grain.
- B. No comment.
- C. Very high water absorption, long mix time, sticky & weak dough, high loaf volume, dull crumb grain, open round cells, good resilient and slightly harsh texture.
- D. No comment.
- E. Excellent loaf externals.
- F. Average dough characteristics, poor crumb characteristics.
- G. No comment.
- H. Low absorption, good mixing tolerance, fine grain, dark yellow crumb, excellent volume.
- I. Long mix time, average absorption, good grain, excellent volume.
- J. No comment.
- K. No comment.
- L. Poor color, not well suited for bread.
- M. No comment.
- N. Good protein and absorption. Fair dough feels and volume.
- O. Average absorption and volume, good mix time and stability.

COOP.

22-2402 SY Monument_CK

- A. Strong dough, long mix, good volume, slightly open grain.
- B. No comment.
- C. Mid high water abs, very long mix time, slight sticky and strong dough, high loaf volume, yellow crumb grain, fine elongate cells, good resilient and silky texture.
- D. No comment.
- E. Excellent loaf externals.
- F. Lower than average protein, undesirable mix time, poor crumb characteristics.
- G. Sponge felt some what crumbly and weak before and after fermentation, however dough did not reflect this.
- H. Good mixing time and tolerance, dense grain, very low volume.
- I. Long mix time, average absorption and grain, good mixing tolerance, good volume.
- J. No comment.
- K. No comment.
- L. Small dense crumbed loaf
- M. No comment.
- N. Fair protein and volume, and absorption. Good dough feels. High mix tolerance.
- O. Average absorption, excellent mix time and stability, lacking in volume.

COOP.

22-2403 19NORD-124_ND

- A. Lower protein, soft dough, and lower loaf volume.
- B. No comment.
- C. Mid high water absorption, medium mix time, slight sticky and weak dough, very high loaf volume, yellow crumb grain, open elongate cells, good resilient and smooth texture.
- D. No comment.
- E. No comment.
- F. Lower than average protein, dough lacked strength at make-up, off crumb color.
- G. No comment.
- H. Low absorption, low mixing tolerance, wet dough character, open grain, dark yellow crumb, low volume.
- I. Low absorption, low mixing tolerance, good volume.
- J. No comment.
- K. No comment.
- L. No comment.
- M. No comment.
- N. Fair protein, absorption could be improved. Low mix tolerance and volume.
- O. Lower absorption, stability, mix time, poor dough handling attributes, unacceptable volume.

COOP.

22-2404 SD15007-11_SD

- A. Strong dough, long mix, good volume, slightly open grain.
- B. No comment.
- C. High water absorption, long mix time, slight sticky and strong dough, high loaf volume, yellow crumb grain, fine elongate cells, good resilient and smooth texture.
- D. No comment.
- E. Slight cap
- F. No comment.
- G. Good balance of characteristics.
- H. Average absorption, good mixing time and tolerance, good grain.
- I. Long mix time, good mixing tolerance, average grain, good volume.
- J. No comment.
- K. No comment.
- L. Very small loaf, dense crumb with harsh texture, not well suited for bread.
- M. No comment.
- N. Fair protein. Good absorption and dough feels. High mix tolerance and volume.
- O. Good absorption, excellent mix time and stability, good dough handling and volume.

COOP.

22-2405 SD18B025-8_SD

- A. Good dough out of mixer and make up, average mix time, excellent loaf volume. More open grain.
- B. No comment.
- C. Very high-water absorption, medium mix time, slight sticky and strong dough, super high loaf volume, yellow crumb gain, fine elongate cells, good resilient and silky texture.
- D. No comment.
- E. Nice loaf externals, slight cap.
- F. High break-and-shred with severe capping.
- G. Longest mix time.
- H. Average absorption, slightly below average gran and volume.
- I. Average absorption and grain, good mixing tolerance, excellent volume.
- J. No comment.
- K. No comment.
- L. Very nice loaf with open, good crumb.
- M. No comment.
- N. Good protein, absorption, and dough feels. Fair mix tolerance, high volume.
- O. Good absorption, excellent mix time and stability, good dough handling and volume.

COOP.

22-2406 NE17443_NE

- A. Good dough out of mixer and make up, average mix time average loaf volume, more open grain.
- B. No comment.
- C. High water absorption, long mix time, slight sticky and strong dough, high loaf volume, yellow crumb grain, fine elongate cells, good resilient and smooth texture.
- D. No comment.
- E. No comment.
- F. Good bake absorption, average flour protein, good dough characteristics, high break-and-shred with severe capping.
- G. No comment.
- H. Low mix time and tolerance, dense grain, dark yellow crumb, low volume, surprisingly good dough character.
- I. Average absorption, good dough character, good grain and volume.
- J. No comment.
- K. No comment.
- L. Average crumb loaf.
- M. No comment.
- N. Good protein and absorption. Low tolerance and volume.
- O. Good absorption, mix time and stability, and dough handling, lacking in volume.

COOP.

22-2407 NE17441_NE

- A. Good dough out of mixer and make up, good mix time, good loaf volume.
- B. No comment.
- C. High water absorption, long mix time, slight sticky and strong dough, super high loaf volume, creamy crumb grain, fine elongate cells, good resilient and silky texture.
- D. No comment.
- E. No comment.
- F. Average dough characteristics, stiff crumb.
- G. No comment.
- H. Good mixing time and tolerance, slightly below average for most other characteristics.
- I. Long mix time, average absorption and grain, good volume.
- J. No comment.
- K. No comment.
- L. Nice loaf symmetry, crumb was dense and harsh texture.
- M. No comment.
- N. Good protein and absorption. Fair mix tolerance and volume.
- O. Good absorption, excellent mix time and stability, and dough handling, lacking in volume.

COOP.

22-2408 WB4727_WB

- A. Shorter mix, slightly soft dough out of mixer but recovered at make up, slightly open grain, good volume.
- B. No comment.
- C. High water absorption, medium mix time, slightly sticky and weak dough, high loaf volume, dull crumb grain, open round cells, good resilient and slightly harsh texture.
- D. No comment.
- E. No comment.
- F. High, rough break-and-shred.
- G. High cell count but irregular.
- H. Low absorption, low mixing time and tolerance, open grain, dark yellow crumb.
- I. Average absorption, low mixing tolerance, open grain, excellent volume.
- J. No comment.
- K. No comment.
- L. No comment.
- M. No comment.
- N. Good protein. Fair mix tolerance, volume, and dough feels. Absorption could be improved.
- O. Average absorption, low mix time and stability, weak off mix (seemed over absorbed), average volume.

Notes: A, G, H, J, N and O conducted sponge and dough bake tests

MICRO-QUALITY ANALYSIS

Entry_Code	Entry_ID	Entry_No	Breeding Program	Location*
22-SD2401	Jagalene	2401	Check	SD
22-SD2402	SY Mounment	2402	Check	SD
22-SD2403	19Nord-124	2403	NDSU	SD
22-SD2404	SD15007-11	2404	SDSU	SD
22-SD2405	SD18B025-8	2405	SDSU	SD
22-SD2406	NE17443	2406	UNL	SD
22-SD2407	NE17441	2407	UNL	SD
22-SD2408	WB4727	2408	WestBred	SD
22-NE2401	Jagalene	2401	Check	NE
22-NE2402	SY Mounment	2402	Check	NE
22-NE2403	19Nord-124	2403	NDSU	NE
22-NE2404	SD15007-11	2404	SDSU	NE
22-NE2405	SD18B025-8	2405	SDSU	NE
22-NE2406	NE17443	2406	UNL	NE
22-NE2407	NE17441	2407	UNL	NE
22-NE2408	WB4727	2408	WestBred	NE
22-ND2401	Jagalene	2401	Check	ND
22-ND2402	SY Mounment	2402	Check	ND
22-ND2403	19Nord-124	2403	NDSU	ND
22-ND2404	SD15007-11	2404	SDSU	ND
22-ND2405	SD18B025-8	2405	SDSU	ND
22-ND2406	NE17443	2406	UNL	ND
22-ND2407	NE17441	2407	UNL	ND
22-ND2408	WB4727	2408	WestBred	ND
22-AP2401	Jagalene	2401	Check	AP
22-AP2402	SY Mounment	2402	Check	AP
22-AP2403	19Nord-124	2403	NDSU	AP
22-AP2404	SD15007-11	2404	SDSU	AP
22-AP2405	SD18B025-8	2405	SDSU	AP
22-AP2406	NE17443	2406	UNL	AP
22-AP2407	NE17441	2407	UNL	AP
22-AP2408	WB4727	2408	WestBred	AP
SD=South Dake	ota State Univeristy	/; NE=Univers	ity of Nebraska-Lincol	n;
D=North Dako	ta State University	; AP=Agripro.		

1. LOCATIONS AND ENTRIES

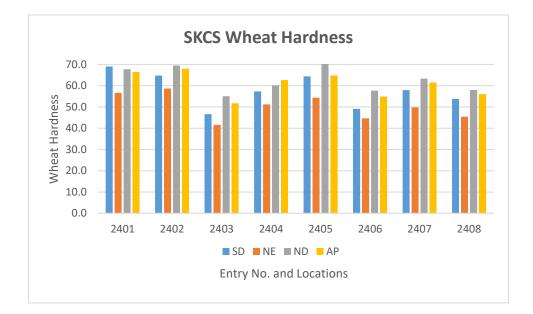
A. There are 4 locations:

Nebraska = NE;

North Dakota = ND;

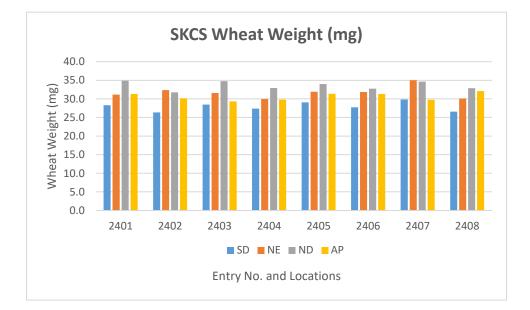
South Dakota = SD.

Agripro = AP

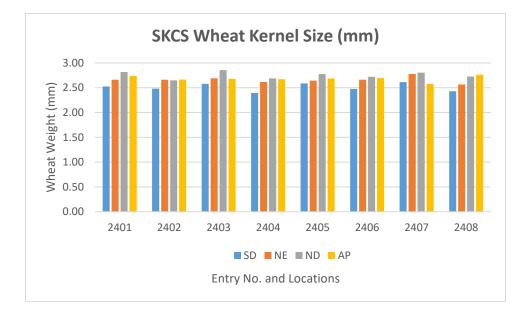

B. There are 8 entries grown in each of locations:

Jagalene (Check) = 2401 SY Mounment = 2402 19NORD-124 = 2403 SD15007-11 = 2404 SD18B025-8 = 2405 NE17443 = 2406 NE17441 = 2407 WB4727 = 2408

2. SKCS SINGLE KERNEL INFORMATION

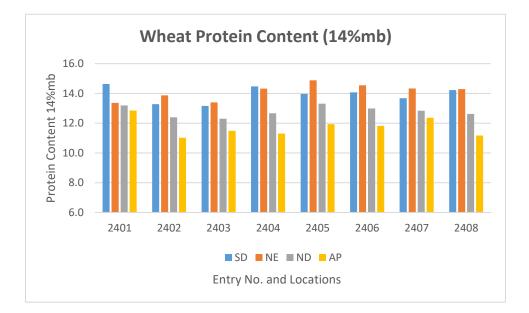

A. Kernel Hardness

	SKCS Wheat Kernel Hardness										
		LOCA	TIONS								
Entry No.	SD	NE	ND	AP	Avg	Std					
2401	69.1	56.6	67.7	66.4	65.0	5.67					
2402	64.8	58.6	69.5	68.0	65.2	4.82					
2403	46.7	41.6	55.1	51.8	48.8	5.91					
2404	57.3	51.3	60.2	62.7	57.8	4.90					
2405	64.4	54.4	70.3	64.9	63.5	6.63					
2406	49.2	44.7	57.7	54.9	51.6	5.84					
2407	57.9	49.8	63.3	61.5	58.1	5.99					
2408	53.7	45.4	58.0	56.1	53.3	5.55					
Avg.	57.9	50.3	62.7	60.8							
Std	7.89	6.08	5.87	5.89							

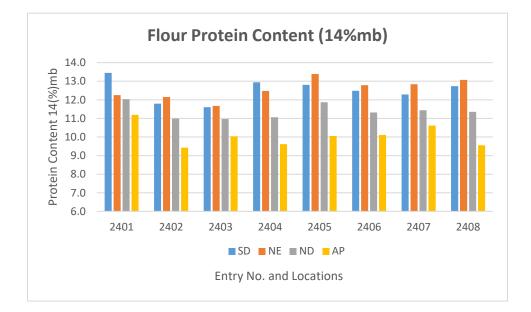

B. Kernel Weight (mg)

	SKCS Wheat Kernel Weight (mg)											
			5									
Entry No.	SD	NE	ND	AP	Avg	Std						
2401	28.3	31.1	34.9	31.3	31.4	2.71						
2402	26.4	32.4	31.8	30.1	30.2	2.71						
2403	28.4	31.6	34.8	29.3	31.0	2.82						
2404	27.4	29.9	32.9	29.8	30.0	2.28						
2405	29.1	32.0	34.0	31.4	31.6	2.04						
2406	27.7	31.9	32.7	31.3	30.9	2.20						
2407	29.8	35.0	34.6	29.7	32.3	2.91						
2408	26.6	30.1	32.9	32.1	30.4	2.83						
Avg.	28.0	31.7	33.6	30.6								
Std	1.20	1.59	1.16	1.01								

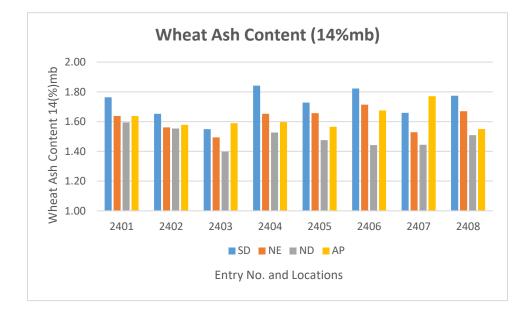
C. Kernel Size


	SKCS Wheat Kernel Size (mm)											
		OCATIONS	3									
Entry No.	SD	NE	ND	AP	Avg	Std						
2401	2.53	2.66	2.82	2.74	2.69	0.12						
2402	2.48	2.66	2.65	2.66	2.61	0.09						
2403	2.58	2.69	2.85	2.68	2.70	0.11						
2404	2.39	2.61	2.69	2.67	2.59	0.14						
2405	2.59	2.64	2.77	2.69	2.67	0.08						
2406	2.47	2.66	2.72	2.69	2.64	0.11						
2407	2.61	2.78	2.80	2.58	2.69	0.11						
2408	2.43	2.56	2.73	2.76	2.62	0.15						
Avg.	2.51	2.66	2.75	2.68								
Std	0.08	0.06	0.07	0.05								

3. PROTEN CONTENT

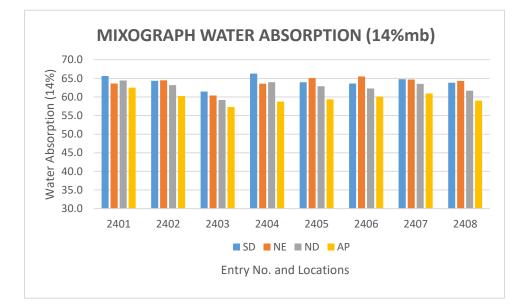

A. Wheat Protein

	Wheat Protein Content (14%mb)									
	l	OCATION	S							
Entry No.	SD	NE	ND	AP	Avg	Std				
2401	14.6	13.4	13.2	12.9	13.5	0.78				
2402	13.3	13.9	12.4	11.0	12.6	1.24				
2403	13.2	13.4	12.3	11.5	12.6	0.87				
2404	14.5	14.3	12.7	11.3	13.2	1.50				
2405	14.0	14.9	13.3	11.9	13.5	1.24				
2406	14.1	14.5	13.0	11.8	13.4	1.21				
2407	13.7	14.3	12.8	12.4	13.3	0.87				
2408	14.2	14.3	12.6	11.2	13.1	1.48				
Avg.	13.9	14.1	12.8	11.7						
Std	0.5	0.5	0.4	0.6						

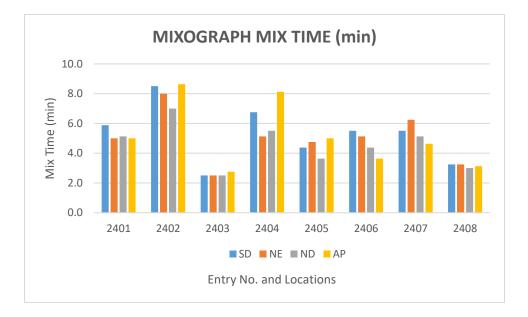

B. Flour Protein

	Flour Protein Content (14%)								
		LOCATION	S						
Entry No.	SD	NE	ND	AP	Avg	Std			
2401	13.4	12.3	12.0	11.2	12.2	0.93			
2402	11.8	12.2	11.0	9.4	11.1	1.21			
2403	11.6	11.7	11.0	10.0	11.1	0.76			
2404	12.9	12.5	11.1	9.6	11.5	1.51			
2405	12.8	13.4	11.9	10.1	12.0	1.46			
2406	12.5	12.8	11.3	10.1	11.7	1.23			
2407	12.3	12.8	11.4	10.6	11.8	0.97			
2408	12.7	13.1	11.3	9.6	11.7	1.60			
Avg.	12.5	12.6	11.4	10.1					
Std	0.61	0.55	0.40	0.59					

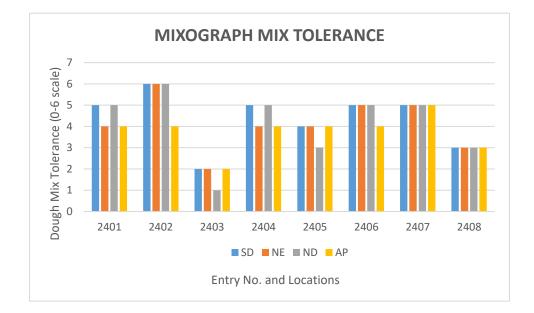
4. Wheat Ash


	Wheat Ash Content (14%)								
			S						
Entry No.	SD	NE	ND	AP	Avg	Std			
2401	1.76	1.64	1.60	1.64	1.66	0.07			
2402	1.65	1.56	1.55	1.58	1.59	0.05			
2403	1.55	1.49	1.40	1.59	1.51	0.08			
2404	1.84	1.65	1.53	1.60	1.65	0.13			
2405	1.73	1.66	1.48	1.57	1.61	0.11			
2406	1.82	1.71	1.44	1.68	1.66	0.16			
2407	1.66	1.53	1.44	1.77	1.60	0.14			
2408	1.77	1.67	1.51	1.55	1.63	0.12			
Avg.	1.72	1.61	1.49	1.62					
Std	0.10	0.08	0.07	0.07					

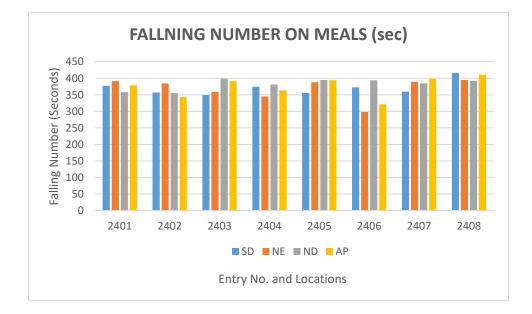
5. MIXOGRAPH TEST RESULTS


A. Mixograph Water Absorption

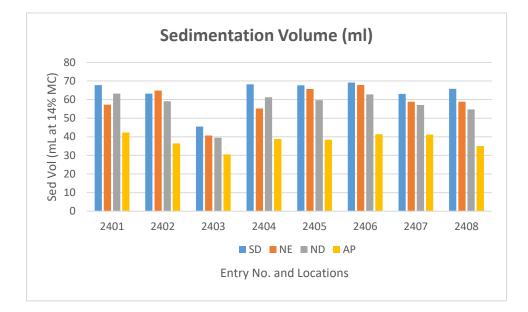
1	Mixograph Water Absorption (14%mb)								
		OCATION							
		LOCATIONS							
Entry No.	SD	NE	ND	AP	Avg	Std			
2401	65.6	63.6	64.4	62.5	64.0	1.33			
2402	64.4	64.5	63.2	60.3	63.1	1.95			
2403	61.5	60.4	59.2	57.3	59.6	1.79			
2404	66.3	63.6	64.0	58.7	63.1	3.17			
2405	63.9	65.1	62.9	59.4	62.8	2.47			
2406	63.6	65.5	62.3	60.1	62.9	2.28			
2407	64.8	64.7	63.5	61.0	63.5	1.78			
2408	63.8	64.3	61.7	59.0	62.2	2.41			
Avg.	64.2	64.0	62.6	59.8					
Std	1.46	1.59	1.66	1.57					


B. Mixograph Mix Time

Mixograph Mix Time (min)								
	l	OCATIONS	6					
Entry No.	SD	NE	ND	AP	Avg	Std		
2401	5.9	5.0	5.1	5.0	5.3	0.42		
2402	8.5	8.0	7.0	8.6	8.0	0.74		
2403	2.5	2.5	2.5	2.8	2.6	0.13		
2404	6.8	5.1	5.5	8.1	6.4	1.36		
2405	4.4	4.8	3.6	5.0	4.4	0.60		
2406	5.5	5.1	4.4	3.6	4.7	0.83		
2407	5.5	6.3	5.1	4.6	5.4	0.68		
2408	3.3	3.3	3.0	3.1	3.2	0.12		
Avg.	5.3	5.0	4.5	5.1				
Std	1.91	1.69	1.47	2.19				


C. Mixograph Mix Tolerance

	Mixograph Mix Tolerance								
	I	OCATION	5						
Entry No.	SD	NE	ND	AP	Avg	Std			
2401	5	4	5	4	4.5	0.58			
2402	6	6	6	4	5.5	1.00			
2403	2	2	1	2	1.8	0.50			
2404	5	4	5	4	4.5	0.58			
2405	4	4	3	4	3.8	0.50			
2406	5	5	5	4	4.8	0.50			
2407	5	5	5	5	5.0	0.00			
2408	3	3	3	3	3.0	0.00			
Avg.	4.4	4.1	4.1	3.8					
Std	1.30	1.25	1.64	0.89					


6. FALLING NUMBER TEST

Falling Number on Meals (sec)								
	-	OCATIONS	5					
Entry No.	SD	NE	ND	AP	Avg	Std		
2401	377	392	358	379	376	14		
2402	357	384	355	343	360	17		
2403	350	359	399	392	375	24		
2404	375	345	382	364	366	16		
2405	356	388	395	394	383	19		
2406	373	298	394	322	347	44		
2407	360	389	385	398	383	16		
2408	416	395	392	411	404	12		
Avg.	370	369	382	375				
Std	21	34	17	30				

7. SEDIMENTATION TEST

Sedimentation Volume (ml)								
	l	LOCATIONS	5					
Entry No.	SD	NE	ND	AP	Avg	Std		
2401	67.8	57.3	63.2	42.3	57.6	11.08		
2402	63.2	64.9	59.0	36.4	55.9	13.19		
2403	45.5	40.7	39.5	30.6	39.1	6.22		
2404	68.2	55.2	61.2	38.8	55.9	12.54		
2405	67.6	65.7	59.6	38.4	57.9	13.39		
2406	69.2	67.8	62.8	41.3	60.3	12.93		
2407	63.0	58.8	57.1	41.2	55.0	9.54		
2408	65.8	58.9	54.7	35.0	53.6	13.23		
Avg.	63.8	58.7	57.2	38.0				
Std	7.74	8.52	7.69	3.93				

SOUTHERN GROWOUT

22-2409	SY Monument_CK
22-2410	Jagalene_CK
22-2411	LCH18-9027_LM
22-2412	TX16M9216_TC
22-2413	BASF7_BF
22-2414	BASF12_BF
22-2415	WB4523_WB
22-2416	WB0433004_WB
22-2417	OK18510_OK
22-2418	OK16107125C-17HR-2_OK
22-2419	OKP17D101A666_OK
22-2420	KS18H111-3_KH
22-2421	CO16SF027_CO
22-2422	CO18D297R_CO
22-2423	KS13DH0041-35_KM

CK=Check; LM=Limagrain; TC=Texas A&M College Station; BF=BASF; WB=Westbred (Bayer); OK=Oklahoma; KH=KSU Hays; CO=Colorado; TB=Texas A&M Bushland; KM=KSU Manhattan.

Description of Test Plots and Breeder Entries

Southern Growout (LM, TC, BF, WB, OK, KH, CO, and KM)

LIMAGRAIN by Marla Barnett

Growing Location & Conditions

The 2022 hard winter Wheat Quality Council samples from Limagrain Cereal Seeds originated from strip increases grown in Wichita, KS located in south central Kansas. The WQC strips were planted on October 28th, 2022 into good soil moisture with good fall stands and decent growth. The field received 120 lbs actual N in March 2022 at Feekes growth stage 4. No fungicide was applied, and no foliar diseases were noted. The mean grain yield of the 16 entries was 43.0 bushels/acre with an average grain protein content of 12.8% (Table 1). Drought was the most persistent stress factor. Temperatures ranged from 2°F on February 4th, 2022 to 104°F on June 15th, 2022 during the growing season at the location. The field received 14.01 inches of rainfall (not counting snowfall) from planting through harvest.

Table 1. Grain yield, test weight, and grain protein from sixteen winter wheat experimental entries and
checks grown in Wichita, KS 2022, Limagrain Cereal Seeds.

	Grain Yield (bu/ac)	Test Weight (Ibs/bu)	Grain Protein (%)
SYMonument	44.27	62.1	12.1
Jagalene	34.59	62.4	12.7
LCH18-9027	54.08	62.9	13.1
TX16M9216	37.69	61.2	13.2
TX14A001249	37.30	62.4	13.7
BASF 7	42.65	61.5	13.4
BASF 12	50.08	63.2	12.8
WB4523	42.85	59.8	12.6
WB4401	42.66	60.2	11.9
OK18510	41.04	62.0	12.4
OK16107125C-17HR-2	51.69	62.2	13.8
OKP17D101A666	38.91	60.8	13.1
KS18H111-3	39.17	60.9	12.2
CO16SF027	33.75	61.5	13.2
CO18D297R	45.81	61.6	11.9
KS13DH0041-35	51.30	61.1	12.7
Mean	43.0	61.61	12.8

LCH18-9027

LCH18-9027 is a medium maturing hard-white winter wheat with an excellent disease package and huge kernels. The pedigree of LCH18-9027 is LCI13-069 / KS090120*C-25. Tolerance to Fusarium head blight with resistance to stripe rust, leaf rust and soil-borne mosaic virus make this medium maturing line very attractive to growers in both the High Plains and central plains of

Oklahoma and Kansas. Straw strength and yield performance is excellent in both dryland and irrigated production. This line was tested in the 2022 Southern Regional Performance Nursery.

Milling and baking quality data from LCS show acceptable milling quality and desirable dough properties and baking quality. Thousand kernel weight of LCH18-9027 typically exceeds 40 grams with a kernel diameter averaging 2.8 mm. Protein content and strength are noted as exceptional with very good absorption. LCH18-9027 was released as LCS White Lightning in August 2022 to replace LCS Yeti acres with improved yield.

OKLAHOMA by Brett Carver

The North Central Agronomy Research Station at Lahoma (12 miles west of Enid) provided the Oklahoma site for the southern uniform WQC growout. The WQC growout has occurred at this same location, and in the same pair of alternating fields, for more than 20 years. Grain yield in 2022, though limited by season-long drought stress at Lahoma, averaged 79 bu/ac in the growout. Test weight averaged 60.0 lb/bu. Wheat protein concentration in an adjacent breeder seed increase nursery was well above the historical mean of 12% for this site and averaged 14.2%. Harvest occurred on time (June 12, 2022), and mean falling number in the adjacent seed increase was 406 sec. No shortcomings are expected beyond genetics in the outcome of this uniform growout.

OK18510 (22-2417)

OK18510 originated from the three-way cross, *TCI982345/Ruby Lee//OK10415*. Tracing back three breeding cycles leads to the common ancestor on both sides of the pedigree, 2180, which originated in the Pioneer Hi-Bred HRW wheat breeding program and was released by Kansas State University in 1987. This is the first progeny of Ruby Lee in the OSU breeding program, but OK18510 and Ruby Lee bear little resemblance in quality except for a softer endosperm.

In 2-yr, multi-site comparisons with Smith's Gold, OK18510 was 0.5 percentage units lower for wheat protein (11.6%), 14 units lower in SKCS hardness index (mid-50s), 1.5 g lower in TKW (34.5 g), and lower in NIRT-predicted flour ash (0.45). OK18510 resembles Smith's Gold in all mixograph parameters (moderately tolerant), though OK18510 may at times exhibit a steeper post-peak decline based on slightly higher stability index values. Baking quality is acceptable to more than acceptable for absorption, loaf volume, and crumb score. OK18510 does not scream for quality like Ruby Lee, but nowadays silence in the quality lab can be golden.

Multi-year yield performance puts OK18510 in high cotton. From 2018 to 2022, OK18510 has exceeded Gallagher by an average of 12 bu/ac, Bentley by 7 bu/ac, Smith's Gold by 6 bu/ac, and Showdown by 5 bu/ac. During the same period, test weight of OK18510 has equaled Smith's Gold and exceeded Gallagher and Showdown by 1 lb/bu. These differentials are reminiscent of the Duster era. Indeed, OK18510 was the highest-ranking experimental line in the OSU wheat breeding program over the past five years, with an average rank of 2.4 of about 40 entries. OK18510 exhibits an intermediate growth habit, excellent vegetative persistence and grazing recovery, and delayed dormancy release with intermediate heading date – a recipe for success in a dual-purpose system. OK18510 can build a wall against common foliar diseases in Oklahoma, with the possible exception of powdery mildew.

OK18510 is in its second year of foundation seed production and purification, awaiting a release hearing in spring 2023.

OK16107125C-17HR-2 (22-2418)

Another 2-gene Clearfield candidate cut from the same cloth as Doublestop CL+ and Strad CL+, this one comes hemmed with BYD immunity. This Doublestop CL+ offspring, and halfsib to the non-Clearfield variety Uncharted, did not perform any better than Doublestop CL+ in the drought year of 2022. Otherwise, it is a step up in yield potential. OK16107125C-17HR-2 prefers a wetter environment and can withstand the common foliar diseases that come with it. OK16107125C-17HR-2 has even shown resistance to various leaf spotting diseases in Oklahoma, including spot blotch. OK16107125C-17HR-2 lies between Strad CL+ and Doublestop CL+ in milling and baking quality (good to outstanding), except with lower protein amounting to about one percentage unit. Now in its second year of foundation seed production, a decision to release will be delayed until after the 2023 harvest to allow one final comparison with another Doublestop CL+ offspring named OK198417C. OK16107125C-17HR-2 drew the straw for entry into the 2022 WQC.

OKP17D101A666 (22-2419)

More of a daredevil than just straight devil, OKP17D101A666 does an outright sprint to the finish line at harvest. Its maturity pattern seems better fit as a short-season variety, that is, planted much later than most HRW varieties, around mid to late November in Oklahoma. OSU is currently testing it that way, along with Butler's Gold. OKP17D101A666 offers a bastion of resistance to multiple disease devils, including wheat soilborne mosaic/spindle streak mosaic complex, leaf rust, stripe rust, powdery mildew, tan spot, and spot blotch. It also provides Hessian fly resistance. Milling and baking quality run average to above average, though its protein concentration is nothing unordinary. Curious is the wheat breeder regarding water absorption of OKP17D101A666 in the current WQC evaluation.

OKP17D101A666 has the pedigree, HV9W07-1031/Gallagher //OK09429, in which OK09429 is 50% Cutter. The doubled haploid was produced in collaboration with Corteva, formerly Pioneer Hi-Bred International, Inc., from a single-head selection of an F₄ bulk population following three consecutive generations of bulk selection in a grazed system.

KSU-HAYS by Guorong Zhang

The 14 lines and two checks (SY Monument and Jagalene) were grown at Hays experimental station in 2022. They were planted with a seeding rate of 60 lb/a on Oct. 8, 2021 in a field with sandy-loam soil. The field had good soil moisture at planting and the plots had good stands. The field was fertilized with 60 lb/a N before planting. Plots were not irrigated, and were not treated with fungicide. The 2022 crop year at Hays was dry in most of the growing season and no disease

was observed. Plots were harvested on June 24, 2022. The average yield of these plots was 53 bu/a with a range from 42 to 64.

KS18H111-3 (KS Territory)

KS18H111-3 was released as KS Territory in August 2022. It is a hard red winter wheat with medium maturity and medium height. KS18H111-3 has good grain yield potential and good drought tolerance, which is similar to KS Dallas and KS Hamilton. KS18H111-3 has a very good disease resistance package for western Kansas, which has been greatly improved when comparing to our previously released varieties. It has resistances to wheat streak mosaic virus, stem rust, and Hessian fly; moderate resistances to stripe and leaf rusts; and intermediate resistances to *Triticum* mosaic virus, Barley yellow dwarf virus, and scab. KS18H111-3 has resistance to grain shattering and very good straw strength. Its test weight is about average (~60 lb/bu). Based on our lab tests, its milling and baking qualities are acceptable.

COLORADO by Esten Mason

Growing Location & Conditions

The Wheat Quality Council samples from Colorado originated from strip increases grown under irrigated conditions at the Agricultural Research, Development and Education Center. The field with the strip increases, including adjacent breeding and extension trials, was fertilized with a pre-plant application of 130 lbs N/acre (applied as 46-0-0) and 45 lbs S/acre. The planting date was September 22, 2021 and the harvest date was July 20, 2022. The trial was planted into moisture with good stands and good fall growth. No diseases noted. The winter and spring were extremely dry. Irrigation started in late April with ~5" total applied. Station estimates showed the trial received 2.8" of precipitation from Jan. 1st through July 25th, which was well below normal.

CO16SF027

CO16SF027 is a hard red winter wheat (HRW) breeding line developed at Colorado State University. CO16SF027 is derived from the single backcross Bearpaw/Antero//Antero and was developed using a modified bulk breeding procedure. Antero is a hard white winter (HWW) wheat release (2012) from CSU with excellent medium height and maturity, good test weight, fair straw strength, good resistance to stripe rust, with average mixing and baking characteristics. Bearpaw is a Montana State University release (2011) and carries the solid stem trait conferring protection against wheat stem sawfly damage. Over several years of testing, CO16SF027 has shown average milling, below average mixing, and average bake loaf volume. CO16SF027 carries the solid stem trait and was released in 2021 and marketed as Amplify SF under the PlainsGold Brand (Certified Seed Only)

CO18D297R

CO18D297R is a HRW breeding line developed at Colorado State University. CO18D297R is a doubled haploid line derived from a cross between the F1 of two CSU breeding lines (CO12D906/CO11D1353) and Monarch. Monarch is a HWW with excellent straw strength and

very high irrigated yield potential, good stripe rust resistance with good quality and very low PPO. Both CO12D906 and CO11D1353 were tested over multiple year in Colorado and showed good milling, mixing, and baking characteristics. CO18D297 has shown average milling and mixing with a good loaf volume over multiple years of testing.

TEXAS A&M College Station by Amir Ibrahim and Jackie Rudd

Texas A&M AgriLife Research Test Plots

Bushland, TX. Located in the Texas Panhandle west of Amarillo. The Bushland location was irrigated with a 60 bu ac⁻¹ average grain yield due to dry conditions and limited irrigation. The fall 2021 planting conditions were poor at Bushland. There was minimal winter precipitation through the Texas High Plains resulting in another dry winter. The few, dry snowfall events provided little moisture, and as a result, much of the region received less than one inch of moisture from October through mid-April. Fungal disease pressure was minimal due to the dry weather.

Texas A&M AgriLife Research Entries

TX16M9216 hard red winter wheat has been developed and proposed and released by Texas A&M AgriLife Research Wheat Improvement Program in 2022. Licensing under negotiation. TX16M9216 is an F₄-derived line from the cross 'X09A440S [=TX07A001482/TAM 401] /'Duster' (PI 644016) made in Amarillo, TX, in 2010. TX16M9216 is an awned, medium-maturing, semi-dwarf wheat with white glumes. It was released primarily for its high grain yield potential under both irrigated and dryland conditions across a wide range of environments in Texas. It is resistant to leaf, stripe, and stem rusts. It carries *Lr34*, *Lr37* and *Lr68*, or leaf rust, *Yr17* for stripe rust, and *Sr38* for stem rust resistance. It is resistant to Hessian fly but susceptible to greenbug. It has large seeds, high grain volume weight, and excellent grain characteristics and milling and bread-baking quality attributes. It is later in maturity, similar in height to most recent and popular TAM wheat cultivars in Texas with strong straw. TX16M9216 will provide a good complement to other hard red winter wheat cultivars for wheat producers across the state, particularly in Texas Rolling Plains, Blacklands, South and Central Texas, and under dryland and irrigated conditions in Texas High Plains and similar adaptation zones.

BASF by Bill Berzonsky

The 2022 Hard Winter Wheat samples for the WQC Trial from BASF were grown in a strip increase in Beaver Crossing, NE. The strips were planted into adequate soil moisture on, or near to 25 Sept. 2021. The lines and hybrid entries emerged well and had decent fall growth before winter. The soil was sampled and recommendations matching our expected yield goal were established. The portion of the field where the strips were grown received 150lbs of N (actual). A broadleaf herbicide application was made in March and Nexicor® and Caramba® fungicides were applied in May prior to and at flowering to prevent foliar disease and FHB infection. Upon ripening, the strips were harvested on 14 July 2022 without receiving any significant pre-harvest rains.

BASF-7 is an experimental hard red winter wheat hybrid developed by BASF. The F_1 is the result of combining female and male parents that are well-adapted to a specific winter wheat area that spans the predominant production regions of Nebraska, Kansas, and north-central Oklahoma. Three years of internal yield test data suggest it is better adapted to the northern part of the region, i.e., NE and northern portions of KS. It was tested in the 2022 Southern Regional Performance Nursery (SRPN). It is a medium-maturity hybrid that is medium-tall. Its straw strength is average; and it should be managed to mitigate any risk of lodging late in the growing season. It is rated as susceptible to WSMV, but moderate in resistance to the prevalent races of stripe rust and leaf rust. BASF-7 is moderate in its resistance to FHB. As a hybrid, its grain yield is expected to be an average of 5 to 10% higher than most pure line varieties. Internal evaluations have typically characterized its milling, mix, and bake qualities as acceptable-good for the hard winter wheat class.

BASF-12 is an experimental hard red winter wheat hybrid developed by BASF. The F₁ is the result of combining female and male parents that are well-adapted to a specific winter wheat area that spans the predominant production regions of Nebraska, Kansas, and north-central Oklahoma. Three years of internal yield test data suggest that it is well adapted to the entire region, and in comparison to BASF-7, it is slightly better adapted to the southern part of the region (i.e., KS and north-central OK). It was tested in the 2022 Southern Regional Performance Nursery (SRPN). It is a medium-maturity hybrid that is tall, but despite its height, its straw strength is excellent, making it resistant to lodging. It tested as moderately susceptible to WSMV, and moderately resistant-to-resistance to the prevalent races of stripe rust. However, it is moderately susceptible-to-susceptible to the prevalent races of leaf rust; and it is susceptible to FHB. In comparison to BASF-7, its overall disease package provides a lower level of resistance, but on average, it has performed better for yield than BASF-7 across the region and exhibits higher test weight. Internal evaluations have typically characterized its milling and mix qualities as good-excellent and its bake qualities as good for the hard winter wheat class.

WESTBRED (Bayer) by Adam Bray

WB4523

WB4523 is a hard red winter wheat, with medium maturity, excellent straw strength, and high yield potential with good milling and baking quality. It has good leaf health and is well adapted to the central and southern plains. It has strong resistance to Stripe Rust, Powdery Mildew, and moderate resistance to Wheat Streak Mosaic Virus. It is moderately resistant to FHB, Stem Rust, and Leaf Rust. Internal quality testing indicates very good mixing and baking quality for hard red winter wheat class. WB4523 was released in 2021 targeting broad acres across the central and southern plains.

0433004 (Out-license)

The out-license line 0433004 is a hard red winter wheat, with medium-early maturity, good straw strength, average protein, and high yield potential. It has good winterhardiness and is broadly adapted to the central and northern plains. It has strong resistance to Stripe Rust and Powdery Mildew, with moderate resistance to FHB and Leaf Rust. It may have some tolerance to Wheat Stem Sawfly. Internal quality testing indicates good mixing and baking quality for the eastern central plains and northern plains region. 0433004 was offered for out-licensing in 2020 in the central plains.

KSU-MANHATTAN by Allan Fritz

KS13DH0041-35 was released as KS Providence in August of 2022 with the pedigree of KS060634K-8/KS040640K-1. The expanded pedigree is KS89180B-2-1-

1/CMSW89Y267//X921025-A-3-2/3/Karl 92 *2/Kakatsi/5/

SERI.1B//KAUZ/HEVO/3/AMAD/4/Tarkio. KS Providence is a medium maturity, medium-tall semi-dwarf hard red winter wheat with excellent yield potential. It is resistant to soil-borne mosaic virus, stem rust, leaf rust and tan spot. It has an intermediate reaction to stripe rust, Fusarium head blight, wheat streak mosaic virus and acid soils and is susceptible to Hessian fly. Paired t-tests from central Kansas over a minimum of 22 site-years indicates KS Providence has a yield advantage over KS Hatchett, Showdown, SY Monument, SY Wolverine and WB 4699 (p<0.05). It has excellent yield potential but some of that advantage over site-years is exceptional yield stability across its primary area of adaptation. KS Providence is best adapted to areas along and east of US Highway 183. It's performance becomes more variable west of that line and the lack of stronger resistance to the wheat streak mosaic virus complex will likely limit expansion west of US-183.

KS Providence carries the 1B.1R wheat-rye translocation. Quality data from the 2020 and 2021 SRPN would indicate that it meets HRWW quality targets for most traits including loaf volume. Its primary quality shortcoming is less than desired stability due, in part, to more variable responses to environment for stability. It does have a positive protein deviation indicating that it holds its protein well for its yield performance. For clarity, that does not mean that it is a high protein line, just that protein is diluted less in KS Providence than most other materials at high yield levels.

Data collected during development of KS Providence would indicate that it has outstanding agronomic performance in is area of adaptation due to excellent yield potential and excellent stability of yield across environments. It will benefit from a fungicide application when stripe rust is present but does possess enough stripe rust resistance to allow delay of fungicide application to target Fusarium in most environments. The quality is not as good as we would aspire to but it does perform as well or better than other varieties in the highest yielding category. Additional information can be found at https://kswheatalliance.org/seed/ks-providence/ and https://kswhea

Southern Growout: 2022 (Small-Scale) Samples

Test entry number	22-2409	22-2410	22-2411	22-2412				
Sample identification	SY Monument_CK	Jagalene_CK	LCH18-9027_LM	TX16M9216_TC				
Wheat Data								
GIPSA classification	1 HRW	1 HRW	1 HDWH	1 HRW				
Test weight (lb/bu)	60.2	62.2	61.6	60.9				
Hectoliter weight (kg/hl)	79.2	81.8	81.0	80.1				
1000 kernel weight (gm)	30.4	33.6	39.2	30.5				
Wheat kernel size (Rotap)								
Over 7 wire (%)	67.0	74.7	87.5	54.6				
Over 9 wire (%)	32.3	24.8	12.5	45.1				
Through 9 wire (%)	0.7	0.5	0.0	0.3				
Single kernel (skcs) ^a	75 7/00 0	74 4 40 5	50.0/40.0	70 5/40 0				
Hardness (avg /s.d)	75.7/20.2	74.1/18.5	59.9/16.6	79.5/19.9				
Weight (mg) (avg/s.d)	30.4/9.7 2.67/0.42	33.6/9.9 2.81/0.39	39.2/12.0 2.87/0.41	30.5/11.6				
Diameter (mm)(avg/s.d) Moisture (%) (avg/s.d)	11.1/1.3	10.9/1.1	11.0/1.0	2.62/0.39 10.6/1.1				
SKCS distribution	03-04-12-81-01	01-06-15-78-01	05-16-27-52-01	01-04-13-82-01				
Classification	Hard	Hard	Hard	Hard				
Wheat protein (12% mb)	13.2	13.5	14.2	14.0				
Wheat ash (12% mb)	1.52	1.50	1.53	1.55				
	Milling and Fl	our Quality Dat	a					
Flour yield (%, str. grade)								
Miag Multomat Mill	76.1	75.3	75.4	72.9				
Quadrumat Sr. Mill	66.5	67.7	66.9	66.8				
Flour moisture (%)	12.1	11.9	11.7	11.8				
Flour protein (14% mb)	11.9	12.5	12.8	12.6				
Flour ash (14% mb)	0.53	0.53	0.49	0.51				
Rapid Visco-Analyser								
Peak time (min)	5.9	6.1	6.0	6.1				
Peak viscosity (RVU)	183.4	180.8	195.3	169.5				
Breakdown (RVU)	76.8	66.2	99.9	65.3				
Final viscosity at 13 min (RVU)	212.0	213.5	166.3	196.8				
Minolta color meter	00.05	00.00	04.00	00.00				
L*	90.65	90.83	91.26 -1.15	90.62				
a* b*	-1.07 8.63	-1.20 8.82	-1.15 8.02	-1.10 8.81				
u	0.03	0.02	0.02	0.01				
PPO	0.292	0.487	0.648	0.611				
Falling number (sec)	438	445	373	439				
Damaged Starch		-	-					
(AI%)	98.8	99.3	97.0	98.7				
(AAĆC76-31)	8.7	9.1	7.0	8.5				

^as.d. = standard deviation; skcs = Single Kernel Characterization System 4100.

Southern Growout: 2022 (Small-Scale) Samples (continued)

Test entry number	22-2413	22-2414	22-2415	22-2416
Sample identification	BASF7_BF	BASF12_BF	WB4523_WB	WB0433004_WB
Wheat Data				
GIPSA classification	1 HRW	1 HRW	1 HRW	1 HRW
Test weight (lb/bu)	60.9	61.8	60.3	60.2
Hectoliter weight (kg/hl)	80.1	81.3	79.3	79.2
1000 kernel weight (gm)	37.1	33.7	30.9	36.8
Wheat kernel size (Rotap)				
Over 7 wire (%)	79.6	72.3	63.0	76.9
Over 9 wire (%)	20.1	27.2	35.8	22.6
Through 9 wire (%)	0.3	0.5	1.2	0.5
Single kernel (skcs) ^a	50 0/47 5	07 7/40 0	04 7/47 4	
Hardness (avg /s.d)	59.2/17.5	67.7/18.3 33.7/11.4	81.7/17.4	65.6/21.6
Weight (mg) (avg/s.d)	37.1/12.0 2.82/0.39	2.69/0.38	30.9/9.6 2.60/0.38	36.8/11.1 2.65/0.38
Diameter (mm)(avg/s.d)	11.0/0.9	11.3/1.0	10.9/1.0	10.8/1.1
Moisture (%) (avg/s.d) SKCS distribution	08-15-29-48-01	02-12-19-67-01	01-03-06-90-01	01-10-24-65-01
Classification	Hard	Hard	Hard	Hard
Classification	- Tara			
		10.0	10.0	10.0
Wheat protein (12% mb)	14.2	13.2	12.0	12.9
Wheat ash (12% mb)	1.58	1.59	1.45	1.50
	g and Flour Qua	lity Data	I	
Flour yield (%, str. grade)	75.0	75.0		=0.0
Miag Multomat Mill	75.2	75.2	73.7	73.6
Quadrumat Sr. Mill	65.7	66.8	62.6	63.7
Flour moisture (%)	12.3	12.7	11.4	11.4
	13.0	11.9	11.4	11.8
Flour protein (14% mb)	0.50	0.52	0.57	0.54
Flour ash (14% mb)	0.00	0.02	0.01	0.01
Rapid Visco-Analyser	6.4	6.4	6.4	6.0
Peak time (min)	6.1	6.1 185 2	6.1	6.3
Peak viscosity (RVU)	180.8	185.3	183.9 68.3	193.9
Breakdown (RVU)	64.6 217.1	65.9 225.4	216.3	68.8 223.4
Final viscosity at 13 min (RVU) Minolta color meter	211.1	220.4	210.3	223.4
	91.36	91.06	90.61	90.64
∟ a*	-1.17	-1.29	-1.54	-1.35
a b*	8.44	8.63	10.32	9.49
PPO	0.522	0.533	0.209	0.484
Falling number (sec)	414	451	406	400
Damaged Starch	+14	-+31	+00	
(Al%)	98.1	98.5	99.2	99.0
(AACC76-31)	8.0	8.4	9.0	8.8
			zation System 4100	

^as.d. = standard deviation; skcs = Single Kernel Characterization System 4100.

Southern Growout: 2022 (Small-Scale) Samples (continued)

Test entry number	22-2417	22-2418	22-2419	22-2420
Sample identification	OK18510_OK	OK16107125C-17HR- 2_OK	OKP17D101A666_ OK	KS18H111-3_KF
	Wheat Data			
GIPSA classification	1 HRW	1 HRW	1 HRW	1 HRW
Test weight (lb/bu)	62.1	61.7	61.8	61.2
Hectoliter weight (kg/hl)	81.7	81.1	81.3	80.5
1000 kernel weight (gm)	33.8	30.5	31.1	32.4
Wheat kernel size (Rotap)				
Over 7 wire (%)	78.4	70.6	74.0	71.6
Over 9 wire (%)	21.4	29.2	25.7	27.8
Through 9 wire (%)	0.2	0.2	0.3	0.6
Single kernel (skcs) ^a				
Hardness (avg /s.d)	61.3/18.1	81.8/17.6	75.8/17.1	73.4/17.9
Weight (mg) (avg/s.d)	33.8/11.0	30.5/9.3	31.1/9.0	32.4/10.3
Diameter (mm)(avg/s.d)	2.82/0.34	2.71/0.35	2.71/0.34	2.79/0.41
Moisture (%) (avg/s.d)	10.7/1.2	10.7/1.1	10.7/1.1	10.8/1.1
SKCS distribution	07-13-26-54-01	00-03-09-88-01	00-04-14-82-01	01-06-16-77-0
Classification	Hard	Hard	Hard	Hard
Wheat protein (12% mb) Wheat ash (12% mb)	13.6 1.57	14.4 1.70	14.4 1.63	13.1 1.57
	ng and Flour Qua	lity Data	T	
Flour yield (%, str. grade)	74.4	74.0	75 5	74.4
Miag Multomat Mill Quadrumat Sr. Mill	74.4 65.1	74.8 66.2	75.5 66.4	74.4
Quadrumat Sr. Mill	05.1	00.2	00.4	65.5
Flour moisture (%)	12.1	11.8	11.6	12.2
	12.1	13.0	13.3	11.8
Flour protein (14% mb)	0.48	0.56	0.56	0.53
Flour ash (14% mb)	0.40	0.50	0.50	0.00
Rapid Visco-Analyser				
Peak time (min)	6.2	6.2	5.9	6.2
Peak viscosity (RVU)	182.2	182.5	156.3	194.3
Breakdown (RVU)	63.,0	62.6	72.6	67.3
Final viscosity at 13 min (RVU)	223.1	214.7	172.6	237.2
Minolta color meter	00.70	00.00	00.44	
L*	90.72	89.96	90.11	90.22
a*	-1.30	-1.45	-1.19	-1.43
b*	8.61	10.09	8.83	9.58
PPO	0.510	0.539	0.530	0.483
Falling number (sec)	414	517	419	471
Damaged Starch				
(AI%)	98.7	99.0	99.1	99.0
(AACC76-31)	8.6	8.8	8.9	8.8

^as.d. = standard deviation; skcs = Single Kernel Characterization System 4100.

Test entry number	22-2421	22-2422	22-2423
Sample identification	CO16SF027_CO	CO18D297R_CO	KS13DH0041- 35_KM
	Wheat Data		55_KM
GIPSA classification	1 HRW	1 HRW	1 HRW
Test weight (lb/bu)	61.2	62.2	60.9
Hectoliter weight (kg/hl)	80.5	81.8	80.1
1000 kernel weight (gm)	32.9	30.9	34.0
Wheat kernel size (Rotap)			
Over 7 wire (%)	62.2	55.7	74.0
Over 9 wire (%)	37.2	43.3	25.7
Through 9 wire (%)	0.6	1.0	0.3
Single kernel (skcs) ^a	00.0/10.0	70.0/10.0	07.0/40.0
Hardness (avg /s.d)	69.0/19.8	70.0/18.0	67.9/18.0
Weight (mg) (avg/s.d)	32.9/11.4	30.9/11.2	34.0/10.1
Diameter (mm)(avg/s.d)	2.63/0.36	2.54/0.36	2.72/0.34
Moisture (%) (avg/s.d)	10.8/1.1 02-12-20-66-01	11.2/0.9	11.0/1.1 02-09-20-69-01
SKCS distribution	02-12-20-66-01 Hard	01-09-17-73-01 Hard	02-09-20-69-0 Hard
Classification	Tialu	Tidiu	Tiatu
\mathbf{W} = \mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x}	10.0	40.0	40.4
Wheat protein (12% mb)	13.6	12.9	13.1
Wheat ash (12% mb)	1.56	1.46	1.59
	ng and Flour Qua	ality Data	
Flour yield (%, str. grade)	75.5		74.0
Miag Multomat Mill	75.5	74.7	74.3
Quadrumat Sr. Mill	67.4	67.0	66.0
	10.0	44.0	44.0
Flour moisture (%)	12.0	11.3 11.7	11.9 12.0
Flour protein (14% mb)	12.3 0.51	0.49	0.54
Flour ash (14% mb)	0.51	0.49	0.54
Rapid Visco-Analyser			
Peak time (min)	6.1	6.2	6.2
Peak viscosity (RVU)	225.8	186.2	166.7
Breakdown (RVU)	98.2	55.1	56.4
Final viscosity at 13 min (RVU)	221.9	238.0	206.1
Minolta color meter	00.70	00.79	00.02
L*	90.73	90.78	90.83 -1.43
a* b*	-1.34 8.69	-1.07 7.97	9.12
U	0.09	1.91	3.12
PPO	0.619	0.599	0.173
Falling number (sec)	455	454	388
Damaged Starch			
(AI%)	98.1	99.2	98.8
(AACC76-31)	8.0	9.0	8.6

Southern Growout: 2022 (Small-Scale) Samples (continued)

^as.d=standard deviation; skcs = Single Kernel Characterization System 4100.

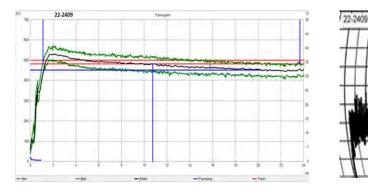
Southern Growout: Physical Dough Tests and Protein Analysis 2022 (Small-Scale) Samples

Test Entry Number	22-2409	22-2410	22-2411	22-2412			
Sample Identification	SY Monument_CK	Jagalene_CK	LCH18-9027_LM	TX16M9216_TC			
		MIXOGRAPH					
Flour Abs (% as-is)	70.5	71.8	72.7	73.0			
Flour Abs (14% mb)	68.4	69.4	70.1	70.6			
Mix Time (min)	8.0	4.1	3.9	4.5			
Mix tolerance (0-6)	5	4	4	4			
	F	ARINOGRAPH					
Flour Abs (% as-is)	66.3	69.4	69.5	71.5			
Flour Abs (14% mb)	64.1	67.0	66.9	69.1			
Peak time (min)	10.8	6.3	7.0	6.2			
Mix stability (min)	22.6	11.9	11.5	11.3			
Mix Tolerance Index (FU)	19	18	21	24			
Breakdown time (min)	20.3	13.6	13.5	12.3			
	ALVEOGRAPH						
P(mm): Tenacity	151	160	134	170			
L(mm): Extensibility	48	64	69	57			
G(mm): Swelling index	15.4 17.8 18.4		18.4	16.8			
W(10 ⁻⁴ J): strength (curve area)	300	396	348	374			
P/L: curve configuration ratio	3.15	2.50	1.94	2.98			
le(P200/P): elasticity index	57.4	58.5	57.6	54.5			
	E>	(TENSIGRAPH					
Resist (BU at 45/90/135 min)	526/1093/1154	480/557/641	358/417/431	376/457/470			
Extensibility (mm at 45/90/135 min)	124/103/94	139/122/122	158/155/160	130/135/132			
Energy (cm ² at 45/90/135 min)	106/146/127	113/111/128	105/126/132	82/109/106			
Resist _{max} (BU at 45/90/135min)	666/1225/1218	614/736/856	515/665/655	480/640/644			
Ratio (at 45/90/135 min)	4.23/10.6/12.3	3.5/4.6/5.3	2.3/2.7/2.7	2.9/3.4/3.6			
	PRC	TEIN ANALYS	SIS				
HMW-GS Composition	2*, 7+9, 5+10	1,2*, 17+18, 5+10	2*, 7+9, 5+10	2*, 7+9, 5+10			
TPP/TMP	0.90	1.09	0.96	1.04			
	SEDI	MENTATION T	EST				
Volume (ml)	59.2	61.5	64.3	54.7			

Southern Growout: Physical Dough Tests and Protein Analysis 2022 (Small-Scale) Samples (continued)

Test Entry Number	22-2413	22-2414	22-2415	22-2416	
Sample Identification	BASF7_BF	BASF12_BF	WB4523_WB	WB0433004_WB	
	MIXOG	RAPH			
Flour Abs (% as-is)	73.5	72.1	73.2	73.8	
Flour Abs (14% mb)	71.3	70.6	69.7	70.8	
Mix Time (min)	4.1	3.9	4.4	3.4	
Mix tolerance (0-6)	3	3	3	2	
	FARINO	GRAPH			
Flour Abs (% as-is)	67.7	67.4	71.9	72.6	
Flour Abs (14% mb)	65.5	65.9	68.4	69.5	
Peak time (min)	7.0	5.0	6.1	5.2	
Mix stability (min)	12.3	9.1	8.3	7.5	
Mix Tolerance Index (FU)	20	23	33	31	
Breakdown time (min)	16.4	11.2	10.3	9.8	
	ALVEO	GRAPH			
P(mm): Tenacity	140	152	188	172	
L(mm): Extensibility	56	52	31	45	
G(mm): Swelling index	16.6	16.0	12.4	14.9	
W(10 ⁻⁴ J): strength (curve area)	299	304	259	312	
P/L: curve configuration ratio	2.50	2.92	6.06	3.82	
le(P200/P): elasticity index	52.7	49.8	0.0	46.5	
	EXTENS	GRAPH			
Resist (BU at 45/90/135 min)	379/438/434	337/435/469	395/445/443	336/385/444	
Extensibility (mm at 45/90/135 min)	139/156/139	145/141/141	117/118/114	124/124/125	
Energy (cm ² at 45/90/135 min)	88/128/103	84/108/117	70/81/76	66/75/86	
Resist max (BU at 45/90/135min)	489/670/585	430/594/645	433/535/508	393/458/529	
Ratio (at 45/90/135 min)	2.7/2.8/3.1	2.3/3.1/3.3	3.4/3.8/3.9	2.7/3.1/3.6	
	PROTEIN A				
HMW-GS Composition	1,2* 7+9, 5+10	1,2*, 17+18, 2+12	2*, 7+9, 5+10	2*, 7+9 (poss 7 ^{OE)} , 5+10	
TPP/TMP	0.83	1.02	1.02	0.99	
	SEDIMENTA	TION TEST			
Volume (ml)	64.1	52.2	48.3	52.4	

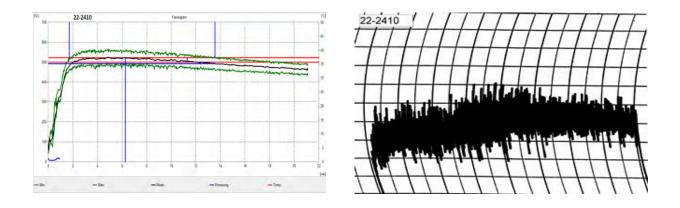
Southern Growout: Physical Dough Tests and Protein Analysis 2022 (Small-Scale) Samples

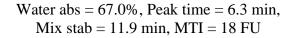

Test Entry Number	22-2417	22-2418	22-2419	22-2420			
Sample Identification	OK18510_OK	OK16107125C- 17HR-2_OK	OKP17D101A666 OK	KS18H111-3_KH			
		MIXOGRAPH					
Flour Abs (% as-is)	71.2	74.8	75.0	71.1			
Flour Abs (14% mb)	68.9	71.9	72.4	69.3			
Mix Time (min)	3.0	3.8	5.1	3.4			
Mix tolerance (0-6)	2	4	5	2			
	F	ARINOGRAPH					
Flour Abs (% as-is)	69.9	73.6	73.6	72.4			
Flour Abs (14% mb)	67.6	70.8	71.0	70.6			
Peak time (min)	6.2	5.2	6.2	6.7			
Mix stability (min)	7.8	6.2	11.7	8.1			
Mix Tolerance Index (FU)	32	42	27	32			
Breakdown time (min)	11.0	8.7	11.7	10.7			
	A	ALVEOGRAPH					
P(mm): Tenacity	151	169	218	175			
L(mm): Extensibility	53	48	36	39			
G(mm): Swelling index	16.2	2 15.4 13.3		13.9			
W(10 ⁻⁴ J): strength (curve area)	295	316	356	282			
P/L: curve configuration ratio	2.85	3.52	3.06	4.49			
le(P200/P): elasticity index	46.6	46.1	0.0	0.0			
	EX	KTENSIGRAPH	1				
Resist (BU at 45/90/135 min)	303/333/383	295/324/365	464/534/527	261/345/317			
Extensibility (mm at 45/90/135 min)	148/146/152	147/153/153	133/137/131	145/140/142			
Energy (cm ² at 45/90/135 min)	78/84/105	76/86/97	100/130/115	65/83/79			
Resist max (BU at 45/90/135min)	389/433/508	382/424/491	590/799/756	329/445/425			
Ratio (at 45/90/135 min)	2.1/2.3/2.5	2.0/2.1/2.4	3.5/3.9/4.0	1.8/2.5/2.2			
	PRC	TEIN ANALYS	SIS				
HMW-GS Composition	2*, 7+8, 5+10	2*, 7+8, 5+10	2*, 17+18, 5+10	2*, 7+9, 5+10			
TPP/TMP	0.96	0.94	1.02	0.98			
	SEDI	MENTATION T	EST				
Volume (ml)	55.7	55.4	58.4	51.5			

Southern Growout: Physical Dough Tests and Protein Analysis 2022 (Small-Scale) Samples (continued)

Test Entry Number	22-2421	22-2422	22-2423
Sample Identification	CO16SF027_CO	CO18D297R_CO	KS13DH0041-35_KM
	MIXOGRAPI	H	
Flour Abs (% as-is)	71.2	72.3	68.7
Flour Abs (14% mb)	69.2	69.7	66.1
Mix Time (min)	2.9	4.9	2.9
Mix tolerance (0-6)	3	4	2
	FARINOGRAI	PH	
Flour Abs (% as-is)	73.0	71.2	70.4
Flour Abs (14% mb)	70.9	68.6	67.8
Peak time (min)	5.8	7.5	7.3
Mix stability (min)	6.8	15.2	11.4
Mix Tolerance Index (FU)	36	17	15
Breakdown time (min)	9.9	15.8	14.8
	ALVEOGRAF	Ч	
P(mm): Tenacity	167	158	159
L(mm): Extensibility	36	42	43
G(mm): Swelling index	13.3	14.4	14.6
W(10 ⁻⁴ J): strength (curve area)	246	272	281
P/L: curve configuration ratio	4.64	3.76	3.70
le(P200/P): elasticity index	0.0	48.6	46.4
	EXTENSIGRA	PH	
Resist (BU at 45/90/135 min)	240/283/351	374/560/590	286/346/386
Extensibility (mm at 45/90/135 min)	141/145/135	127/129/124	129/122/126
Energy (cm ² at 45/90/135 min)	57/70/78	75/118/118	60/67/79
Resist max (BU at 45/90/135min)	294/367/442	450/731/785	354/432/489
Ratio (at 45/90/135 min)	1.7/2.0/2.6	3.0/4.4/4.7	2.2/2.9/3.1
	PROTEIN ANAL	YSIS	
HMW-GS Composition	2*, 7+9, 5+10	2*, 7+9, 5+10	2*, 7+8, 5+10
TPP/TMP	0.79	0.84	0.71
S	EDIMENTATION	TEST	
Volume (ml)	43.1	54.6	46.3

Farinograms

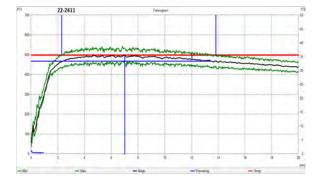

Mixograms

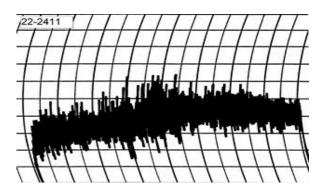


Water abs = 64.1%, Peak time = 10.8 min, Mix stab = 22.6 min, MTI = 19 FU

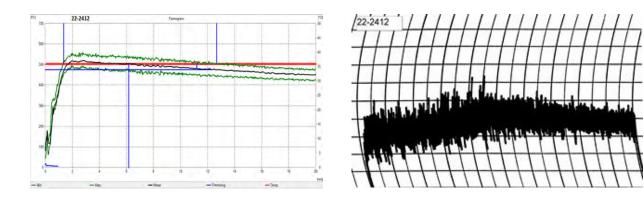
Water abs = 68.4% Mix time = 8.0 min

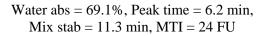
22-2409, SY Mounment_CK



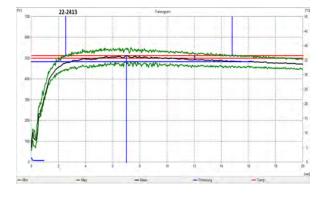

Water abs = 69.4%Mix time = 4.1 min

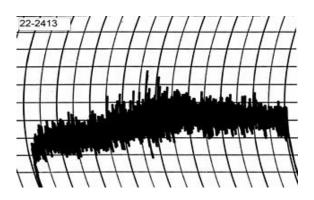
Farinograms


Mixograms



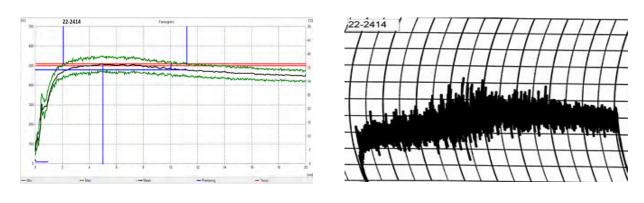
Water abs = 66.9%, Peak time = 7.0 min, Mix stab = 11.5 min, MTI = 21 FU Water abs = 70.1%Mix time = 3.9 min




Water abs = 70.6% Mix time = 4.5 min

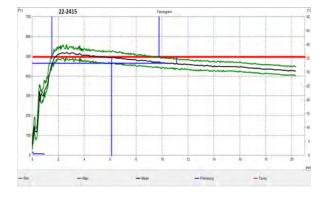
Farinograms

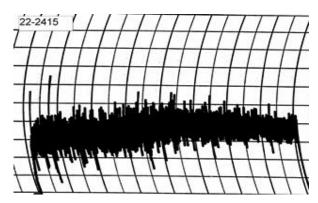
Mixograms



Water abs = 65.5%, Peak time = 7.0 min, Mix stab = 12.3 min, MTI = 20 FU

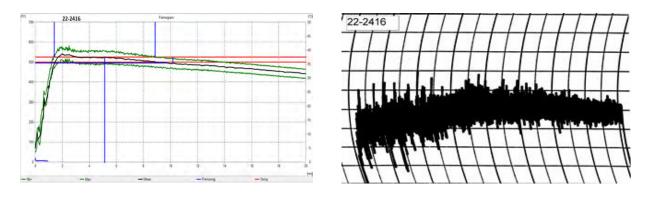
Water abs = 71.3%Mix time = 4.1 min

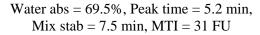

Water abs = 65.9%, Peak time = 5.0 min, Mix stab = 9.1 min, MTI = 23 FU


Water abs = 70.6%Mix time = 3.9 min

Farinograms

Mixograms



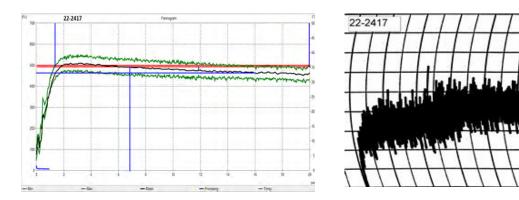


Water abs = 68.4%, Peak time = 6.1 min, Mix stab = 8.3 min, MTI = 33 FU

Water abs = 69.7% Mix time = 4.4 min

22-2415, WB4523_WB

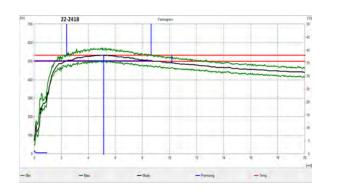
Water abs = 70.8%Mix time = 3.4 min

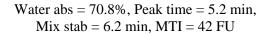

22-2416, WB0433004_WB

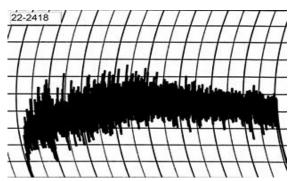
Physical Dough Tests- Farino and Mixo

2022 (Small Scale) Samples – Southern Growout

Farinograms

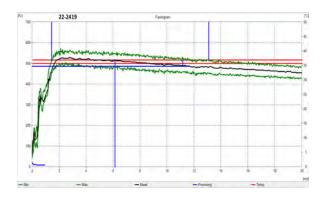

Mixograms



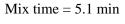

Water abs = 67.6%, Peak time = 6.2 min, Mix stab = 7.8 min, MTI = 32 FU

Water abs = 68.9% Mix time = 3.0 min

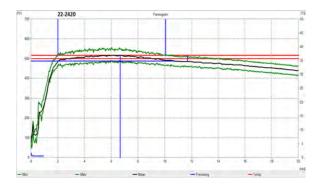
22-2417, OK18510_OK

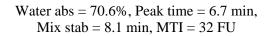


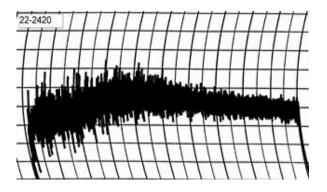
Water abs = 71.9% Mix time = 3.8 min


22-2418, OK16107125C-17HR-2_OK

Farinograms

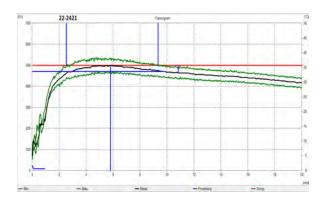



Water abs = 71.0%, Peak time = 6.2 min, Mix stab = 11.7 min, MTI = 27 FU


Water abs = 72.4%

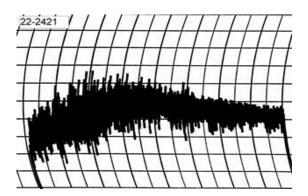
22-2419, OKP17D101A666_OK

Water abs = 69.3%Mix time = 3.4 min

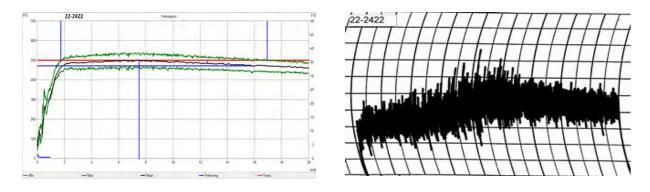

22-2420, KS18H111-3_KH

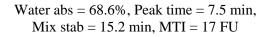
L.L.

22-2419


Mixograms

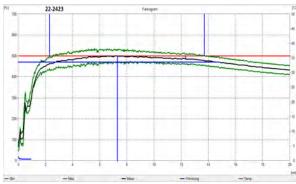
Farinograms

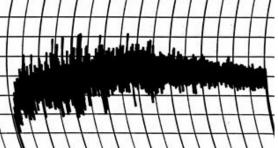

Water abs = 70.9%, Peak time = 5.8 min, Mix stab = 6.8 min, MTI = 36 FU


Mixograms

Water abs = 69.2%Mix time = 2.9 min

22-2421, CO16SF027_CO

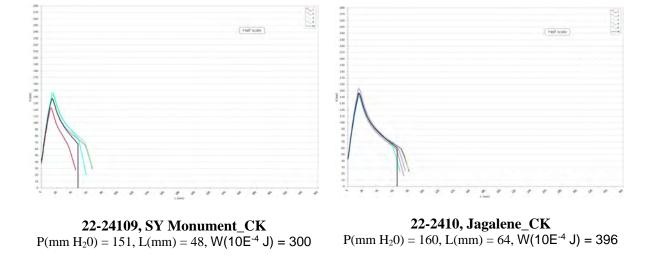


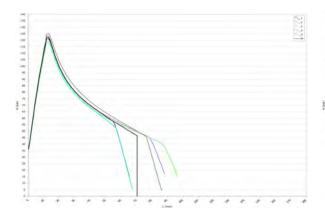


Water abs = 69.7%Mix time = 4.9 min

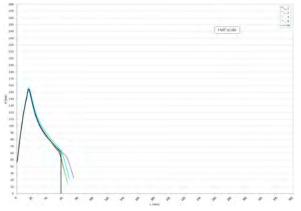
22-2422, CO18D297R_CO

Farinograms

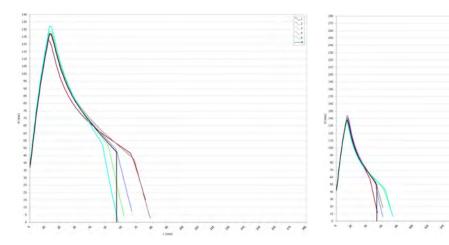




Mixograms

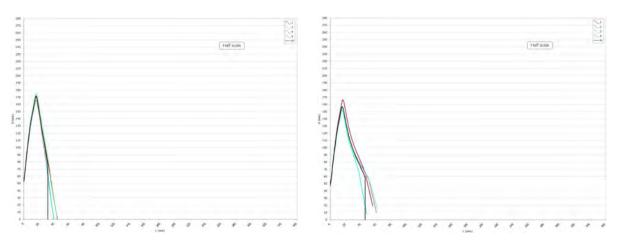

Water abs = 767.8%, Peak time = 7.3 min, Mix stab = 11.4 min, MTI = 15 FU Water abs = 66.1%Mix time = 2.9 min

22-2423, KS13DH0041-35_KM



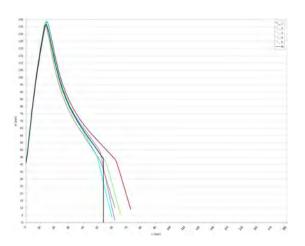
22-2411, LCH18-9027_LM P(mm H₂0) = 134, L(mm) = 69, W(10E⁻⁴ J) = 348

22-2412, TX16M9216_TC P(mm H₂0) = 170, L(mm) = 57, W(10E⁻⁴ J) = 374

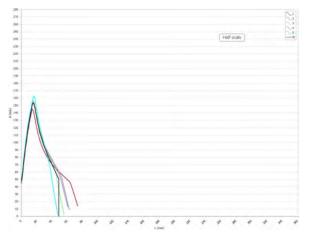


22-2413, BASF7_BF P(mm H₂0) = 140, L(mm) = 56, W(10E⁻⁴ J) = 299

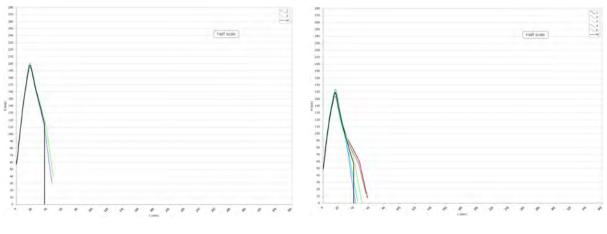
22-2414, BASF12_BF P(mm H₂0) = 152, L(mm) = 52, W(10E⁻⁴ J) = 304


222227

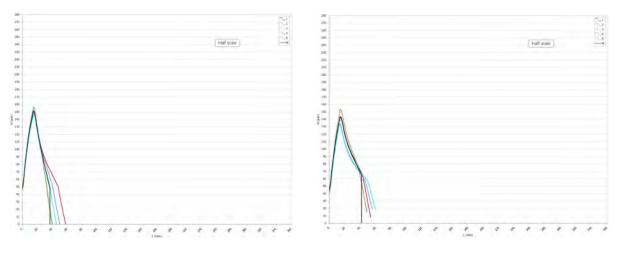
Half scale



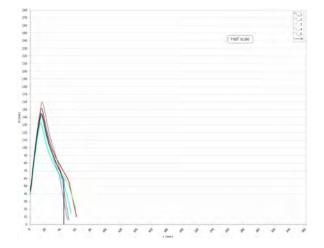
22-2415, WB4523_WB P(mm H₂0) = 188, L(mm) = 31, W(10E⁻⁴ J) = 259


22-2416, WB0433004_WB P(mm H₂0) = 172, L(mm) = 45, W(10E⁻⁴ J) = 312

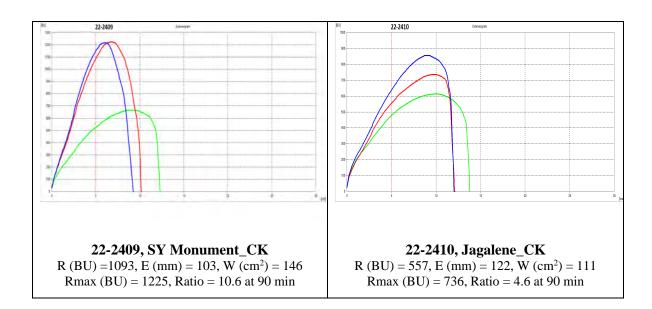
22-2417, OK18510_OK P(mm H₂0) = 151, L(mm) = 53, W(10E⁻⁴ J) = 295

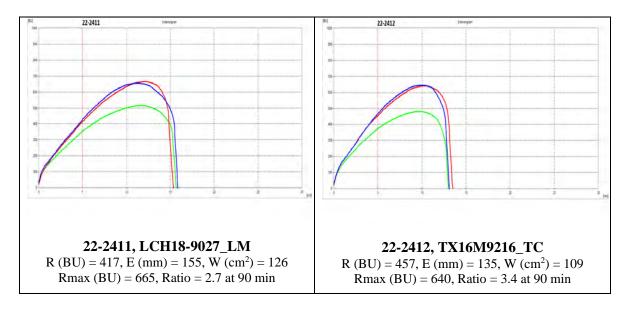


22-2418, OK16107125C-17HR-2_OK P(mm H₂0) = 169 L(mm) = 48, W(10E⁻⁴ J) = 316

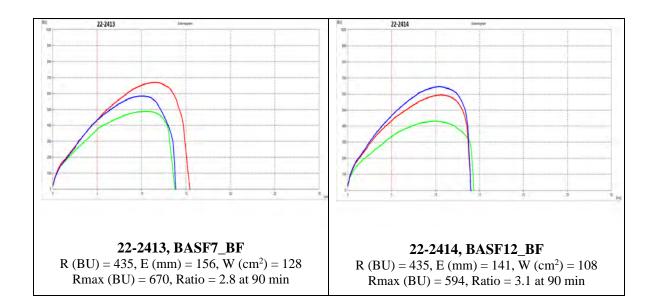

22-2419, OKP17D101A666_OK P(mm H₂0) = 218, L(mm) = 36, W(10E⁻⁴ J) = 356

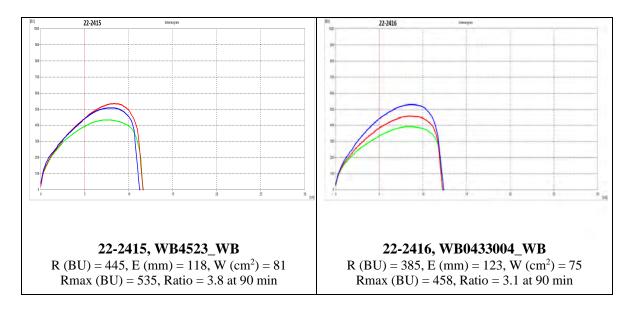
22-2420, KS18HH111-3_KH P(mm H₂0) = 175, L(mm) = 39, W(10E⁻⁴ J) = 282

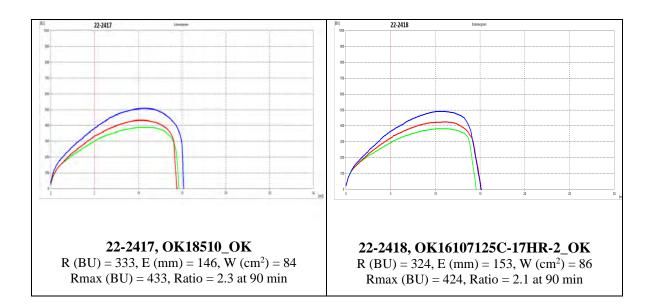


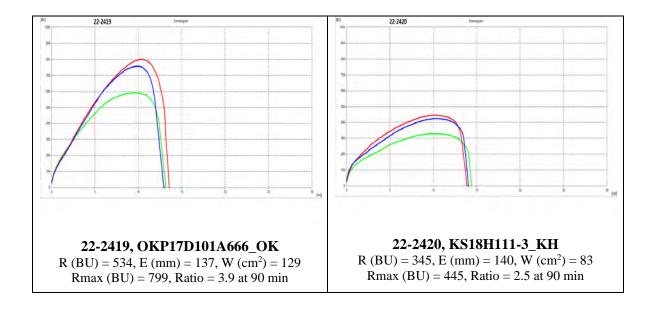

22-2421, CO16SF027_CO P(mm H₂0) = 167, L(mm) = 36, W(10E⁻⁴ J) = 246

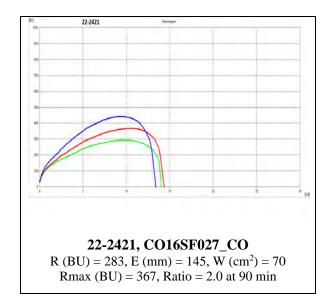
22-2422, CO18D297R_CO P(mm H₂0) = 158, L(mm) = 42, W(10E⁻⁴ J) = 272

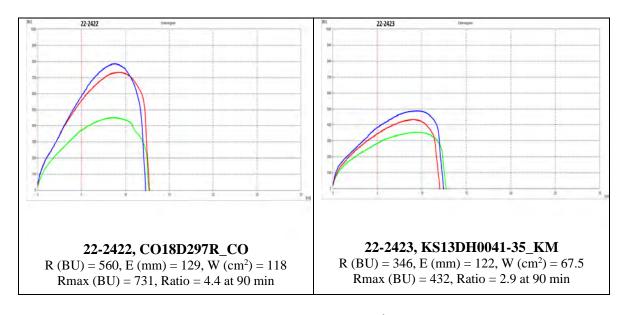



22-2423, KS13DH0041-35_KM $P(mm H_20) = 159, L(mm) = 43, W(10E^{-4} J) = 281$

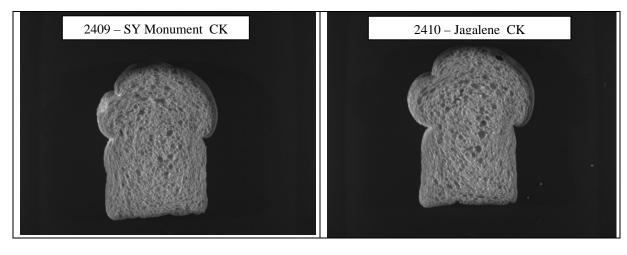


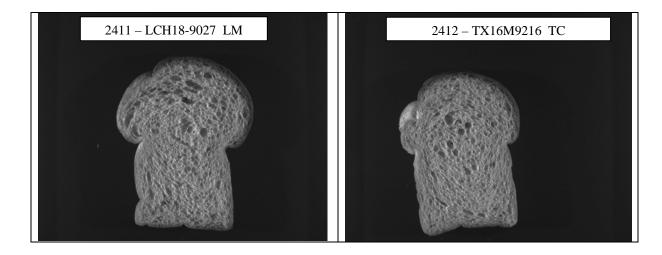

Notes: R (BU) = Resistance; E (mm) = Extensibility; W (cm²) = Energy; Rmax (BU) = Maximum resistance. Green = 45 min, Red = 90 min, and Blue = 135 min.

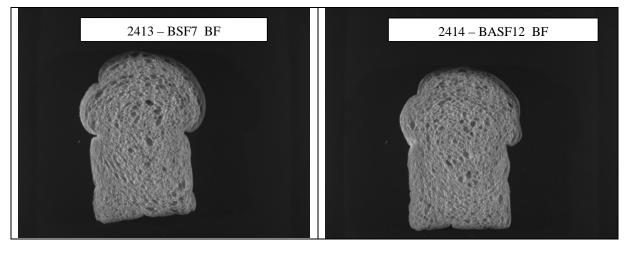


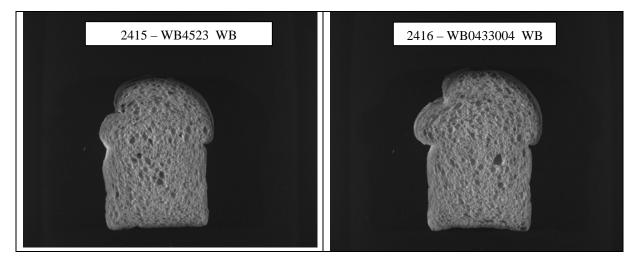


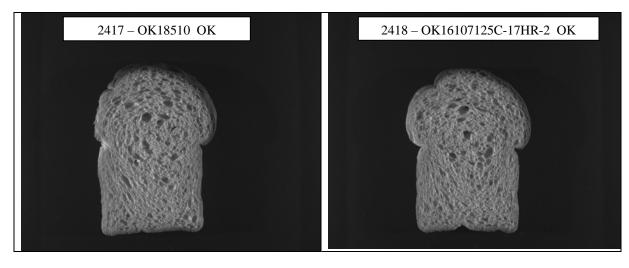
Notes: R (BU) = Resistance; E (mm) = Extensibility; W (cm²) = Energy; Rmax (BU) = Maximum resistance. Green = 45 min, Red = 90 min, and Blue = 135 min.

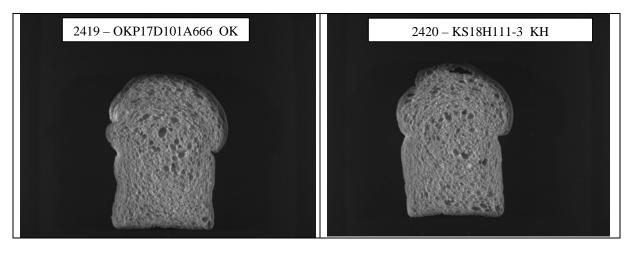




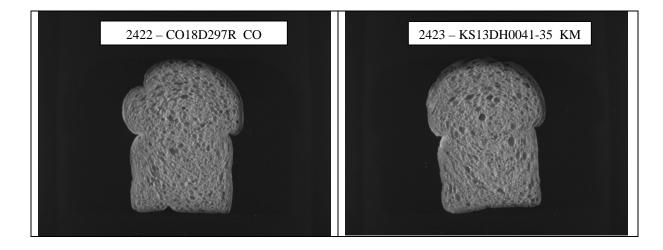

Notes: R (BU) = Resistance; E (mm) = Extensibility; W (cm²) = Energy; Rmax (BU) = Maximum resistance. Green = 45 min, Red = 90 min, and Blue = 135 min.


Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2409	6248	108	3821	0.415	1.915	2.995	1.820	-1.00
2410	6444	109	3705	0.425	2.073	4.120	1.840	-4.45

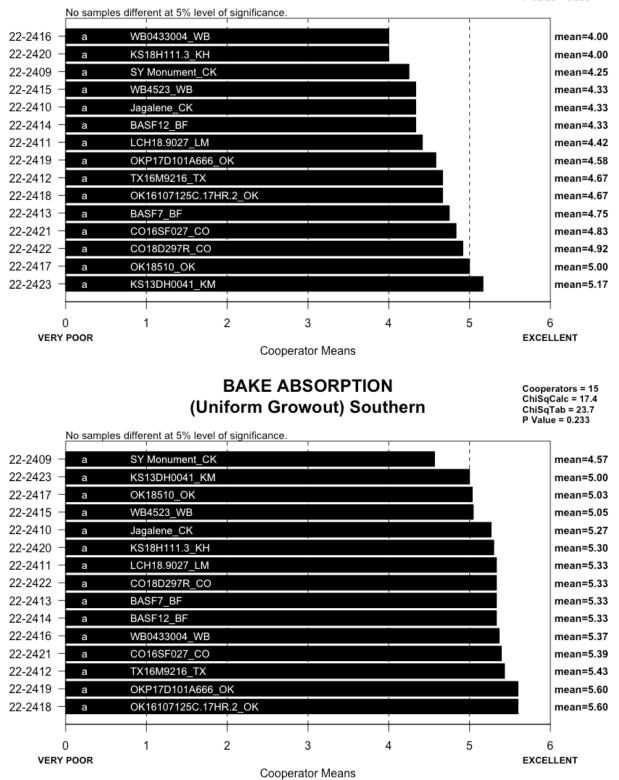

Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2411	7213	106	3747	0.440	2.425	5.295	1.710	-8.55
2412	6315	110	3715	0.430	2.040	5.170	1.775	-4.75


Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2413	6647	114	4090	0.420	1.975	1.315	1.765	-1.65
2414	6348	115	4029	0.420	1.880	1.125	1.790	-5.60

Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2415	5561	108	3227	0.428	2.050	4.993	1.798	-6.10
2416	6078	109	3533	0.425	2.080	3.020	1.805	-5.30


Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2417	6443	108	3812	0.420	2.165	4.690	1.795	-5.60
2418	6345	107	3847	0.420	1.955	2.070	1.820	-8.10

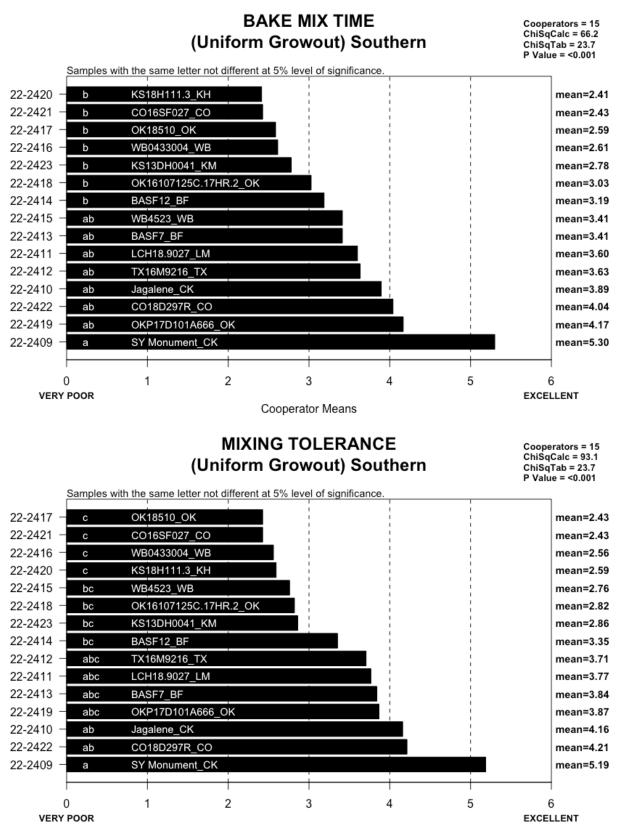
Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2419	6247	107	3648	0.430	2.060	3.005	1.750	-7.65
2420	6264	110	3755	0.425	2.103	4.615	1.765	-6.15


Entry	Slice Area	Slice	Number	Wall Thick	Cell Diameter	Non-	Avg. Cell	Cell Angle to
#	(mm ²)	Brightness	Cells	(mm)	(mm)	uniformity	Elongation	Vertical (⁰)
2421	6101	108	3354	0.435	2.273	2.495	1.780	-6.98

Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2422	6121	106	3673	0.420	1.970	1.830	1.795	-6.35
2423	6362	108	3792	0.420	2.050	2.025	1.710	-3.50

SPONGE CHARACTERISTICS (Uniform Growout) Southern

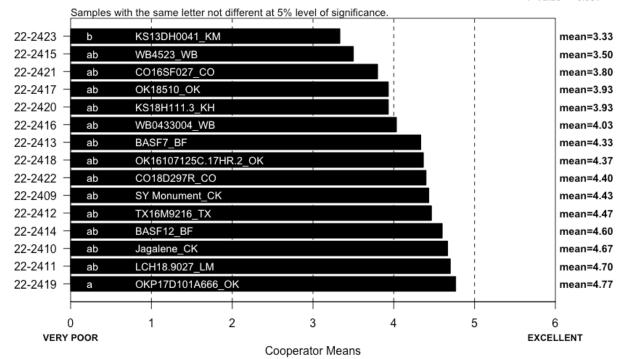
Cooperators = 6 ChiSqCalc = 7 ChiSqTab = 23.7 P Value = 0.936



BAKE ABSORPTION, ACTUAL (14% MB) (Uniform Growout) Southern Cooperators A – O

IDCODE	ID	Α	в	С	D	Е	F	G	н	(\mathbf{I})	J	к	L	М	N	0
22-2409	SY Monument_CK	58	66.7	65.1	69.0	68.3	64.9	64.1	60.9	66.6	68.0	64.1	71.1	68.4	66.9	64
22-2410	Jagalene_CK	59	66.2	65.9	72.2	68.9	67.8	67.0	62.6	69.3	69.6	67.0	74.5	69.4	68.5	67
22-2411	LCH18.9027_LM	59	67.3	66.9	71.9	68.3	67.9	66.9	62.4	68.1	69.6	66.9	74.7	70.1	65.9	67
22-2412	TX16M9216_TX	59	69.9	67.4	74.4	72.3	70.1	69.1	61.6	68.3	72.0	69.1	77.7	70.6	70.7	69
22-2413	BASF7_BF	59	69.5	66.1	70.4	68.7	66.2	65.5	60.8	69.5	68.0	65.5	73.4	71.3	68.6	66
22-2414	BASF12_BF	58	68.0	65.6	71.1	69.9	66.7	65.9	62.5	68.2	68.6	65.9	72.8	70.6	66.7	66
22-2415	WB4523_WB	57	67.3	64.7	73.1	71.7	70,3	68.4	61.5	67:7	71.7	68.4	77.5	69.7	70.2	68
22-2416	WB0433004_WB	58	67.6	66.1	74,7	70.4	71.0	69.5	62.0	68.7	72.8	69.5	78.2	70.8	72.4	70
22-2417	OK18510_OK	58	66.7	66.4	72.6	68.9	68.6	67.6	60.7	66.9	70.0	67.6	74.8	68.9	67.9	68
22-2418	OK16107125C.17HR.2_OK	59	72.0	68.1	75.9	72.6	72,4	70.8	62.1	69.8	73.8	70.8	78.9	71.9	72.9	71
22-2419	OKP17D101A666_OK	59	70.9	69.0	76.1	72.5	73,0	71.0	62.4	70.1	74.0	71.0	79.0	72.4	71.1	71
22-2420	KS18H111.3_KH	58	66.0	66.1	75.5	69.0	72,4	70.6	62.2	68.9	73.0	70.6	77.3	69.3	69.1	71
22-2421	CO16SF027_CO	58	66.4	64.9	75.7	66.4	72.3	70.9	62.0	69.2	73.2	70.9	75.0	69.2	67.9	71
22-2422	CO18D297R_CO	58	66.3	65.1	73.7	68.7	70.0	68.6	62.4	68.1	71.6	68.6	73.7	69.7	70.2	69
22-2423	KS13DH0041_KM	58	66.4	66.1	72.7	67.7	70.2	67.8	61.4	66.1	70.0	67:8	72.4	66.1	68.9	68

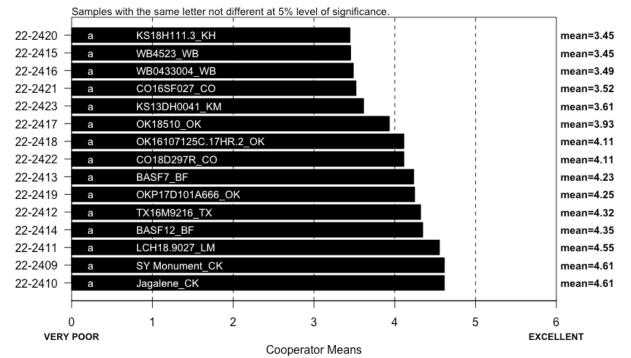
BAKE MIX TIME, ACTUAL (Uniform Growout) Southern Cooperators A – O


IDCODE	ID	Α	в	С	D	E	F	G	н	1	J	ĸ	L	М	N	0
22-2409	SY Monument_CK	15	6.8	7.5	6.7	6.0	8.0	16.0	7	8.8	25	10.0	5.0	8.0	18	27
22-2410	Jagalene_CK	10	3.7	5.4	4.4	4.3	5.3	14.0	5	6.0	18	6.0	5.0	4.1	11	18
22-2411	LCH18.9027_LM	11	4.3	7.0	4.3	4.0	4.8	9.0	4	5.0	14	6.0	4.5	3.9	11	12
22-2412	TX16M9216_TX	10	4.2	4.5	4.1	4.0	5.3	15.5	4	5.0	12	6.0	5.0	4.5	10	12
22-2413	BASF7_BF	10	4.5	4.2	3.6	3.8	4.3	10.0	4	5.0	10	6.0	4.0	4.1	10	16
22-2414	BASF12_BF	8	3.7	4.8	4.5	4.0	4.3	13.0	4	4.3	8	4.5	4.5	3.9	10	14
22-2415	WB4523_WB	7	4.7	5.2	5.4	3.8	5.3	5.0	4	6.9	9	6.0	4.5	4.4	7	10
22-2416	WB0433004_WB	7	3.6	4.2	4.8	3.5	4.5	6.0	4	5.0	5	4.0	4.0	3.4	8	10
22-2417	OK18510_OK	6	3.4	5.8	3.6	3.5	3.5	6.0	4	4.0	8	6.0	4.0	3.0	7	8
22-2418	OK16107125C.17HR.2_OK	7	3.6	4.4	4.2	3.8	4.0	7.0	4	5.0	10	5.0	4.0	3.8	9	g
22-2419	OKP17D101A666_OK	9	4.8	7.0	4.9	4.8	5.5	9.0	6	5.8	20	7.0	5.3	5.1	14	15
22-2420	KS18H111.3_KH	6	3.6	4.2	4.4	3.5	3.8	7.0	4	4.0	6	6.0	4.5	3.4	6	7
22-2421	CO16SF027_CO	8	2.8	3.4	2.6	3.3	3.0	5.0	4	3.4	8	5.0	3.5	2.9	8	7
22-2422	CO18D297R_CO	9	4.0	5.6	5.6	4.5	5.3	8.0	5	6.5	12	8.0	5.0	4.9	10	16
22-2423	KS13DH0041_KM	6	3.8	4.2	3.8	3.5	4.0	11.0	4	4.5	8	6.0	5.0	2.9	6	10

Cooperator Means

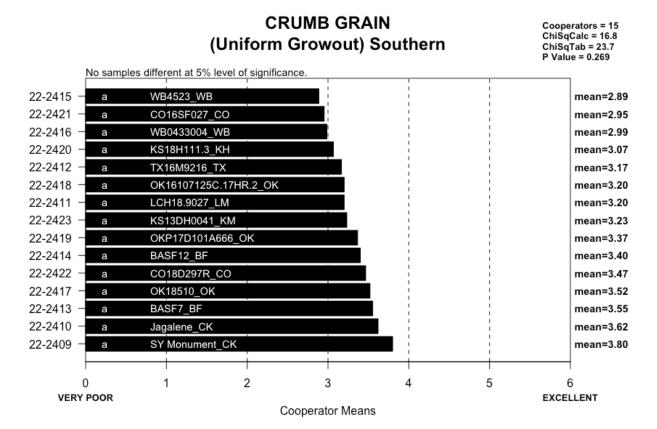
DOUGH CHAR. 'OUT OF MIXER' (Uniform Growout) Southern

Cooperators = 15 ChiSqCalc = 38.2 ChiSqTab = 23.7 P Value = <0.001



DOUGH CHAR. 'OUT OF MIXER', DESCRIBED (Uniform Growout) Southern

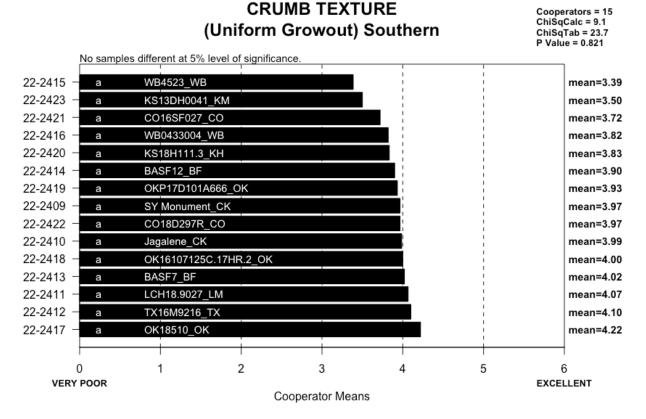
IDCODE	ID	Sticky	Wet	Tough	Good	Excellent
22-2409	SY Monument_CK	3	0	5	6	1
22-2410	Jagalene_CK	1	0	3	10	1
22-2411	LCH18.9027_LM	3	0	1	8	3
22-2412	TX16M9216_TX	3	1	2	9	0
22-2413	BASF7_BF	3	1	1	9	1
22-2414	BASF12_BF	1	1	1	11	1
22-2415	WB4523_WB	4	3	٦	6	1
22-2416	WB0433004_WB	4	з	1	6	1
22-2417	OK18510_OK	4	3	1	6	1
22-2418	OK16107125C.17HR.2_OK	3	0	3	9	Ū
22-2419	OKP17D101A666_OK	2	1	1	8	3
22-2420	KS18H111.3_KH	5	2	0	7	1
22-2421	CO16SF027_CO	6	3	1	4	1
22-2422	CO18D297R_CO	3	2	1	8	1
22-2423	KS13DH0041_KM	7	3	٦	.4 -	0


DOUGH CHAR. 'AT MAKE UP' (Uniform Growout) Southern

Cooperators = 15 ChiSqCalc = 26.5 ChiSqTab = 23.7 P Value = 0.023

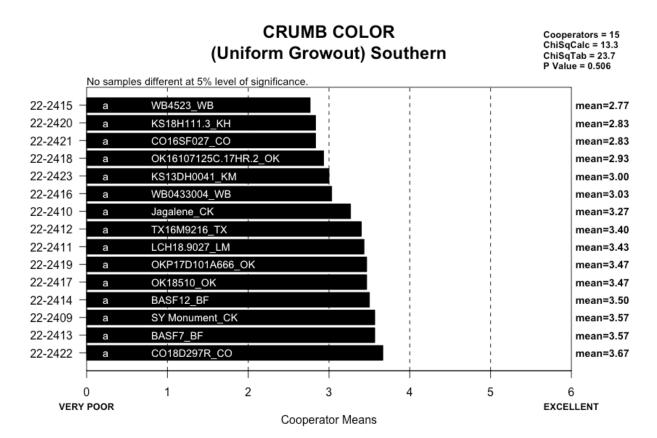
DOUGH CHAR. 'AT MAKE UP', DESCRIBED (Uniform Growout) Southern

IDCODE	ID	Sticky	Wet	Tough	Good	Excellent
22-2409	SY Monument_CK	1	0	3	10	1
22-2410	Jagalene_CK	2	0	3	8	2
22-2411	LCH18.9027_LM	4	0	0	.9	2
22-2412	TX16M9216_TX	6	0	0	8	1
22-2413	BASF7_BF	3	0	3	7	2
22-2414	BASF12_BF	3	2	1	8	1
22-2415	WB4523_WB	4	2	4	4	T
22-2416	WB0433004_WB	4	3	1	6	1
22-2417	OK18510_OK	6	0	1	6	2
22-2418	OK16107125C.17HR.2_OK	5	0	0	9	1
22-2419	OKP17D101A666_OK	4	0	2	7	2
22-2420	KS18H111.3_KH	5	2	1	7	0
22-2421	CO16SF027_CO	5	4	0	6	0
22-2422	CO18D297R_CO	5	1	0	8	1
22-2423	KS13DH0041_KM	7	2	0	6	0



CRUMB GRAIN, DESCRIBED (Uniform Growout) Southern

IDCODE	ID	Open	Fine	Dense
22-2409	SY Monument_CK	7	6	2
22-2410	Jagalene_CK	10	5	D
22-2411	LCH18.9027_LM	10	4	1
22-2412	TX16M9216_TX	11	1	з
22-2413	BASF7_BF	8	7	0
22-2414	BASF12_BF	9	5	1
22-2415	WB4523_WB	8	3	4
22-2416	WB0433004_WB	11	2	2
22-2417	OK18510_OK	8	6	্
22-2418	OK16107125C.17HR.2_OK	1.0	3	2
22-2419	OKP17D101A666_OK	9	3	з
22-2420	KS18H111.3_KH	9	1	5
22-2421	CO16SF027_CO	1.0	2	3
22-2422	CO18D297R_CO	8	3	4
22-2423	KS13DH0041_KM	8	-4	3

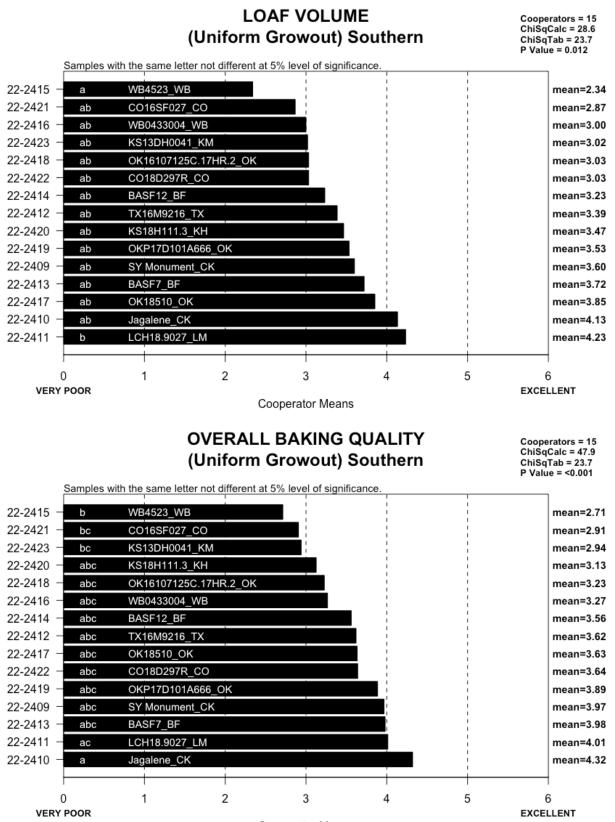

CELL SHAPE, DESCRIBED (Uniform Growout) Southern

IDCODE	ID	Round	Irregular	Elongated
22-2409	SY Monument_CK	4	6	5
22-2410	Jagalene_CK	4.	7	4
22-2411	LCH18.9027_LM	8	5	2
22-2412	TX16M9216_TX	7	7	1
22-2413	BASF7_BF	7	5	3
22-2414	BASF12_BF	4.	7	4
22-2415	WB4523_WB	6	7	2
22-2416	WB0433004_WB	7	7	1
22-2417	OK18510_OK	6	б	3
22-2418	OK16107125C.17HR.2_OK	8	5	2
22-2419	OKP17D101A666_OK	6	7	2
22-2420	KS18H111.3_KH	5	8	2
22-2421	CO16SF027_CO	7	7	11
22-2422	CO18D297R_CO	8	5	2
22-2423	KS13DH0041_KM	9	-4	2

CRUMB TEXTURE, DESCRIBED (Uniform Growout) Southern

IDCODE	ID	Harsh	Smooth	Silky
22-2409	SY Monument_CK	5	6	4
22-2410	Jagalene_CK	3	8	4
22-2411	LCH18.9027_LM	2	10	3
22-2412	TX16M9216_TX	4	7	4
22-2413	BASF7_BF	3	7	5
22-2414	BASF12_BF	3	10	2
22-2415	WB4523_WB	6	7	2
22-2416	WB0433004_WB	5	8	2
22-2417	OK18510_OK	2	9	4
22-2418	OK16107125C.17HB.2_OK	4	8	3
22-2419	OKP17D101A666_OK	3	9	3
22-2420	KS18H111.3_KH	4	9	2
22-2421	CO16SF027_CO	5	9	i.
22-2422	CO18D297R_CO	4	9	2
22-2423	KS13DH0041_KM	5	9	t

CRUMB COLOR, DESCRIBED (Uniform Growout) Southern


IDCODE	ID	Gray	Dark_Yellow	Yellow	Dull	Creamy	White	Bright_White
22-2409	SY Monument_CK	0	Ø	4	1	8	2	0
22-2410	Jagalene_CK	0	0	-4	4	6	1	0
22-2411	LCH18.9027_LM	0	1	-4	2	6	2	0
22-2412	TX16M9216_TX	0	D.	-4	3	6	2	0
22-2413	BASF7_BF	0	۵	-4	2	6	3	0
22-2414	BASF12_BF	0	α	5	1	6	3	0
22-2415	WB4523_WB	0	3	5	1	4	2	0
22-2416	WB0433004_WB	0	3	2	3	6	1	0
22-2417	OK18510_OK	0	۵	з	2	9	1	0
22-2418	OK16107125C.17HR.2_OK	0	9	4	3	6	1	0
22-2419	OKP17D101A666_OK	0	σ	3	5	3	- 4	0
22-2420	KS18H111.3_KH	0	3	3	3	5	1	0
22-2421	CO16SF027_CO	0	3	2	3	6	1	0
22-2422	CO18D297R_CO	0	σ	2	3	7	3	0
22-2423	KS13DH0041_KM	0	2	6	2	4	1	0

LOAF WEIGHT, ACTUAL (Uniform Growout) Southern Cooperators A – O

IDCODE	ID	Α	в	C	D	E	F	G	н	1	J	к	L	М	N	0
22-2409	SY Monument_CK	419	150.5	144.9	137.0	146.3	146.3	452.0	481.7	153.2	445	459	131.5	144.7	430.7	478
22-2410	Jagalene_CK	419	155.8	145.6	136.2	146.7	148.1	446.5	472.9	155.9	438	454	133.5	145.6	426.2	473
22-2411	LCH18.9027_LM	418	155,4	140.8	135.2	147.8	146.8	451.5	480.0	152.4	433	460	136.6	146.3	423.9	471
22-2412	TX16M9216_TX	415	160.7	145.9	137.6	149.3	148.8	444.0	483.1	154.7	438	463	136.8	146.0	424.3	467
22-2413	BASF7_BF	415	160.2	145.3	137.1	145.2	148.8	447.5	485.6	158.1	441	456	142.9	146.9	420.5	474
22-2414	BASF12_BF	417	158.3	143.2	136.2	148.1	148.2	450.5	483.9	156.3	440	456	141.2	146.2	429.0	476
22-2415	WB4523_WB	416	162.9	144.8	139.2	147.9	150.3	442.5	481.2	154.8	439	458	135.0	144.8	426.9	472
22-2416	WB0433004_WB	419	156.5	147.1	136.6	148.6	150.6	442.5	479.0	155.7	438	454	141.1	146.6	423.6	467
22-2417	OK18510_OK	420	153.6	145.0	138.0	147.1	148.0	444.5	480.8	153.9	438	470	138.5	146.4	425.9	470
22-2418	OK16107125C.17HR.2_OK	421	156.6	147.7	137.9	149.2	151.6	444.0	483.4	155.5	442	462	138.5	146.2	430.8	468
22-2419	OKP17D101A666_OK	418	152.3	144.0	135.1	150.0	151.5	447.5	480.3	157.0	439	457	135.4	145.4	425.8	468
22-2420	KS18H111.3_KH	417	156,4	145.6	135.1	146.8	148,4	439.0	480.0	157.8	450	456	140.6	145.1	425.3	463
22-2421	CO16SF027_CO	419	155.3	142.9	137.5	143.0	148.5	442.0	481.4	155.7	433	457	136.8	146.5	434.2	462
22-2422	CO18D297R_CO	417	156,8	141.5	138,4	142.4	149.0	461.5	480.3	154.4	442	458	141.6	145.9	426.2	470
22-2423	KS13DH0041_KM	416	152.3	145.9	139.1	144.8	146.9	440.0	480.5	153.9	445	456	135.6	144.7	424.6	471

LOAF VOLUME, ACTUAL (Uniform Growout) Southern Cooperators A – O

IDCODE	ID	Α	в	C	D	E	F	G	н	1	J	к	L	м	N	0
22-2409	SY Monument_CK	2650	909	880	847	1065	744	1984	2313	905	2115	2480	790	740	2700	2706
22-2410	Jagalene_CK	2725	910	950	863	975	758	2085	2488	975	2332	2437	960	810	2725	2677
22-2411	LCH18.9027_LM	2725	1035	1050	938	1035	890	1679	2363	1090	2231	2269	1025	925	2725	2530
22-2412	TX16M9216_TX	2650	915	860	780	965	731	1780	2238	940	2256	2278	915	810	2525	2692
22-2413	BASF7_BF	2725	928	883	879	1000	765	1855	2275	990	2199	2494	900	855	2525	2648
22-2414	BASF12_BF	2650	913	885	816	935	721	1781	2413	915	2139	2300	890	785	2575	2633
22-2415	WB4523_WB	2550	729	760	693	830	572	2127	2325	780	2121	2247	890	705	2500	2604
22-2416	WB0433004_WB	2650	800	800	759	875	685	2130	2400	875	2196	2224	830	745	2550	2633
22-2417	OK18510_OK	2800	895	953	868	920	741	1966	2413	915	2262	2342	975	850	2650	2662
22-2418	OK16107125C.17HR.2_OK	2650	864	873	805	895	711	1897	2163	900	2153	2316	875	775	2525	2663
22-2419	OKP17D101A666_OK	2650	873	983	819	1040	736	1837	2213	925	2260	2311	940	765	2475	2648
22-2420	KS18H111.3_KH	2650	827	835	811	900	704	2031	2375	900	2273	2292	935	805	2450	2648
22-2421	CO16SF027_CO	2675	830	800	789	860	685	1741	2313	905	2190	2231	890	780	2400	2382
22-2422	CO18D297R_CO	2775	822	848	751	915	662	1689	2238	890	2150	2247	935	770	2475	2662
22-2423	KS13DH0041_KM	2750	825	835	753	865	670	1898	2275	890	2207	2387	850	710	2625	2618

Cooperator Means

COOP.

22-2409 SY Monument_CK

- A. Strong dough, long mix, low loaf volume, slightly open grain and creamy interior.
- B. No comment.
- C. High water absorption, long mix time, slight sticky and strong dough, high loaf volume, yellow crumb grain, fine elongate cells, good resilient and silky texture.
- D. No comment.
- E. Excellent loaf externals.
- F. Average protein, long mix time.
- G. No comment.
- H. Average absorption, good mixing time and tolerance, good grain, low volume.
- I. Long mix time, average absorption and grain, good mixing tolerance, good volume.
- J. No comment.
- K. No comment.
- L. Small yellow colored loaf.
- M. No comment.
- N. Good protein and volume. High mix tolerance.
- O. High absorption, excellent mix time and stability, dough handling, lacking in volume, improved volume to 2809 cc at 62% absorption, recommend lower absorption.

COOP.

22-2410 Jagalene_CK

- A. Good dough out of mixer, average mix and volume, creamy interior, slightly open grain.
- B. No comment.
- C. Very high water absorption, medium mix time, slight sticky and strong dough, high loaf volume, yellow crumb grain, open elongate cells, good resilient and smooth texture.
- D. No comment.
- E. No comment.
- F. No comment.
- G. One side bulge.
- H. High absorption, good grain, average volume.
- I. Very high absorption, open grain, excellent volume.
- J. No comment.
- K. No comment.
- L. No comment.
- M. No comment.
- N. Good protein and volume. High absorption. Fair mix tolerance and dough feels.
- O. High absorption, good mix time and stability, dough handling, lacking in volume, improved volume to 2839 cc at 62% absorption, recommend lower absorption.

COOP.

22-2411 LCH18-9027_LM

- A. Good dough out of mixer, average mix and volume, creamy interior, slightly open grain.
- B. No comment.
- C. Very high water abs, medium mix time, slight sticky and strong dough, super high loaf volume, yellow crumb grain, open elongate cells, soft resilient and smooth texture.
- D. No comment.
- E. Nice loaf externals.
- F. Nice dough and crumb characteristics, soft crumb structure, good volume.
- G. Very gummy, potentially over absorbed.
- H. High absorption, low mixing time and tolerance, dense grain, dark yellow crumb, low volume.
- I. High absorption, good dough character, excellent volume.
- J. No comment.
- K. No comment.
- L. Crumb is average but yellow in color, largest volume.
- M. No comment.
- N. High protein, good volume. Fair mix tolerance.
- O. High absorption, lower mix time and stability, slack and sticky dough handling, lacking in volume, improved volume to 2633 cc at 62% absorption, recommend lower absorption <62%, poor overall performance.

COOP.

22-2412 TX16M9216_TX

- A. Good dough out of mixer, average mix and volume, creamy interior, pen grain.
- B. No comment.
- C. Very high water absorption, medium mix time, slight sticky and strong dough, mid high loaf volume, yellow crumb grain, open elongate cells, good resilient and slightly harsh texture.
- D. No comment.
- E. Nice loaf externals.
- F. No comment.
- G. No comment.
- H. Average absorption, low mixing time and tolerance, very low volume.
- I. High absorption, good volume.
- J. No comment.
- K. No comment.
- L. No comment.
- M. No comment.
- N. High protein and absorption. Fair ix tolerance. Volume could be improved.
- O. High absorption, lower mix time and stability, slack and sticky dough handling, lacking in volume, improved volume to 2780 cc at 62% absorption. Recommend lower absorption < 62%, poor overall performance.

COOP.

22-2413 BASF7_BF

- A. Good dough out of mixer, average mix and volume, creamy interior, open grain.
- B. No comment.
- C. Very high water absorption, medium mix time, slight sticky and strong dough, high loaf volume, dull crumb grain, fine elongate cells, good resilient and smooth texture.
- D. No comment.
- E. Excellent loaf externals.
- F. No comment.
- G. Flat top.
- H. Average absorption, open grain, very low volume.
- I. Very high absorption, good grain, excellent volume.
- J. No comment.
- K. No comment.
- L. Poor crumb and yellow color.
- M. No comment.
- N. High protein and absorption. Fair mix tolerance. Volume could be improved.
- O. High absorption, good mix time and stability and dough handling, lacking in volume. No improvement at 62% absorption.

COOP.

22-2414 BASF12_BF

- A. Shorter mix but good pliable dough low loaf volume, nice crumb grain. Creamy interior.
- B. No comment.
- C. High water absorption, medium mix time, slight sticky and strong dough, high loaf volume, yellow crumb grain, fine elongate cells, good resilient and smooth texture.
- D. No comment.
- E. Nice loaf externals.
- F. Good crumb resilience.
- G. Some larger holes.
- H. High absorption, low mixing time and tolerance, good grain.
- I. High absorption, good grain and volume.
- J. No comment.
- K. No comment.
- L. Open and irregular crumb.
- M. No comment.
- N. Good protein and absorption. Fair mix tolerance and volume.
- O. High absorption, average mix time and stability, good dough handling, lacking in volume. No improvement at 62% absorption.

COOP.

22-2415 WB4523_WB

- A. Shorter mix but good pliable dough, low loaf volume, nice crumb grain and creamy interior.
- B. No comment.
- C. Mid high-water absorption, medium mix time, slight sticky and strong dough, fair loaf volume, dark yellow crumb grain, open irregular cells, good resilient and harsh texture.
- D. No comment.
- E. Weak dough, left and right break.
- F. Poor dough and loaf characteristics.
- G. One of the shortest mix time.
- H. Average absorption, low mixing time and tolerance, dark yellow crumb, low volume. Tough sponge character with no volume resulting dough was sticky and tough.
- I. Tough lifeless dough with no gas retention, dense grain, dark yellow crumb, low volume. Low protein flour.
- J. No comment.
- K. No comment.
- L. Poor crumb and very yellow color.
- M. No comment.
- N. Fair protein, high absorption. Low mix tolerance. Volume could be improved.
- O. High absorption, low mix time and stability, slack and sticky dough handling, lacking in volume, slight improvement at 62% absorption to 2633. Recommend lower absorption <62% poor overall.

COOP.

22-2416 WB0433004_WB

- A. Shorter mix but good pliable dough, low loaf volume. Nice crumb grain. Creamy interior.
- B. No comment.
- C. High water absorption, medium mix time, slight sticky and strong dough, fair loaf volume, dark yellow crumb grain, open irregular cells, good resilient and harsh texture.
- D. No comment.
- E. Cap
- F. No comment.
- G. No comment.
- H. High absorption, low mixing time and tolerance, open grain, dark yellow crumb. Tough sponge character, sticky wet dough.
- I. High absorption, low mixing tolerance, open grain, dark yellow crumb, average volume.
- J. No comment.
- K. No comment.
- L. Small loaf with yellow color, not well suited for bread.
- M. No comment.
- N. Good protein, high absorption. Low mix tolerance. Volume could be improved.
- O. High absorption, low mix time and stability, slack and sticky dough handling, lacking in volume, improved volume to 2751 cc at 62% absorption recommend lower absorption < 62% for optimization.

COOP.

22-2417 OK18510_OK

- A. Short mix, slightly open grain, average loaf volume.
- B. No comment.
- C. High water absorption, medium mix time, slight sticky and strong dough, high loaf volume, yellow crumb grain, fine elongate cells, good resilient and smooth texture.
- D. No comment.
- E. Left and right break.
- F. No comment.
- G. No comment.
- H. Average absorption, low mixing time and tolerance, sticky dough character.
- I. Average absorption, low mixing tolerance, open grain, good volume.
- J. No comment.
- K. No comment.
- L. Very good crumb but not best color.
- M. No comment.
- N. Good protein, absorption, and volume. Low mix tolerance.
- O. High absorption, low mix time and stability, slack and sticky dough handling, lacking in volume, no improvement at 62% absorption, poor overall performance.

COOP.

22-2418 OK16107125C-17HR-2_OK

- A. Shorter mix but good pliable dough, low loaf volume, nice crumb grain, creamy interior.
- B. No comment.
- C. Very high water absorption, medium mix time, slight sticky and strong dough, high loaf volume, yellow crumb grain, open elongate cells, good resilient and smooth texture.
- D. No comment.
- E. No comment.
- F. Higher than average protein, low tolerance.
- G. No comment.
- H. High absorption, low mixing time and tolerance, dense grain, dark yellow crumb, poor volume. Tough sponge character.
- I. Very high absorption, good volume.
- J. No comment.
- K. No comment.
- L. Poor color but average crumb.
- M. No comment.
- N. High protein and absorption. Low mix tolerance. Volume could be improved.
- O. High absorption, low mix time and stability, slack and sticky dough handling, lacking in volume, no improvement at 62% absorption, poor overall performance.

COOP.

22-2419 OKP17D101A666_OK

- A. Good dough out of mixer and make up average mix, lower protein, open grain, slightly dull interior.
- B. No comment.
- C. Very high water absorption, long mix time, slight sticky and strong dough, high loaf volume, yellow crumb grain, fine elongate cells, good resilient and smooth texture.
- D. No comment.
- E. Nice loaf externals.
- F. Higher than average protein, water absorption, and crumb resilience.
- G. Large holes.
- H. High absorption, good mixing time, dense grain, very low volume. Tough sponge character with no volume.
- I. Very high absorption, good mixing tolerance, good volume.
- J. No comment.
- K. No comment.
- L. Good loaf symmetry but average crumb.
- M. No comment.
- N. High protein and absorption. Fair mix tolerance, volume could be improved.
- O. High absorption, average mix time and stability and dough handling, lacking in volume, improved volume to 2780 cc at 62% absorption. Recommend lower absorption < 62% for optimization.

COOP.

22-2420 KS18H111-3_KH

- A. Good dough out of mixer and make up, average mix, lower protein, open grain, slightly dull interior.
- B. No comment.
- C. High water absorption, medium mix time, slight sticky and strong dough, fair loaf volume, dark yellow crumb grain, open round cells, good resilient and harsh texture.
- D. No comment.
- E. Nice loaf externals.
- F. Good crumb springiness.
- G. No comment.
- H. High absorption, low mixing time and tolerance, sticky dough at makeup, open grain, dark yellow crumb, low volume.
- I. High absorption, low mixing tolerance, dense grain, dark yellow crumb, good volume.
- J. No comment.
- K. No comment.
- L. No comment.
- M. No comment.
- N. Fair protein. High absorption, low mix tolerance, volume could be improved.
- O. High absorption, low mix time and stability, slack and sticky dough handling, lacking in volume, no improvement at 62\$ absorption. Poor overall performance.

COOP.

22-2421 CO16SF027_CO

- A. Good dough out of mixer and makeup. Average mix, lower protein, open grain. Slightly dull interior.
- B. No comment.
- C. High water absorption, short mix time, slight sticky and strong dough, fair loaf volume, dark yellow crumb grain, open round cells, good resilient and slightly harsh texture.
- D. No comment.
- E. Slight cap
- F. Good crumb resilience.
- G. One of the shortest mix time, flat top.
- H. High absorption, low mixing time and tolerance, dense grain, dark yellow crumb, low volume.
- I. Very high absorption, open grain, dark yellow crumb, good volume.
- J. No comment.
- K. No comment.
- L. No comment.
- M. No comment.
- N. Good protein and absorption. Low mix tolerance. Unideal dough feels. Volume could be improved.
- O. High absorption, low mix time and stability, slack and sticky dough handling, lacking in volume, no improvement at 62% absorption. Poor overall performance.

COOP.

22-2422 CO18D297R_CO

- A. Good dough out of mixer and makeup, average mix, lower protein, open grain. Slightly dull interior.
- B. No comment.
- C. High water absorption, medium mix time, slight sticky and strong dough, medium loaf volume, creamy crumb grain, fine elongate cells, good resilient and silky texture.
- D. No comment.
- E. No comment.
- F. No comment.
- G. No comment.
- H. High absorption, very low volume.
- I. High absorption, average volume.
- J. No comment.
- K. No comment.
- L. Good loaf symmetry, dense harsh texture crumb.
- M. No comment.
- N. Good protein and dough feels. Fair mix tolerance. High absorption. Volume could be improved.
- O. High absorption, average mix time and stability and dough handling, lacking in volume, similar volume at 62% absorption (improved dough handling).

COOP.

22-2423 KS13DH0041-35_KM

- A. Good dough out of mixer and makeup. Average mix, lower protein, open grain, slightly dull interior.
- B. No comment.
- C. High water absorption, medium mix time, slight sticky and strong dough, medium loaf volume, yellow crumb grain, fine elongate cells, good resilient and smooth texture.
- D. No comment.
- E. Slight cap.
- F. No comment.
- G. No comment.
- H. Average absorption, low mix time and tolerance, sticky wet dough, dense grain, dark yellow crumb, very low volume.
- I. Average absorption, low mixing tolerance, open grain, dark yellow crumb, average volume.
- J. No comment.
- K. No comment.
- L. Poor crumb and yellow color.
- M. No comment.
- N. Good protein, volume, and dough feels. Low mix tolerance.
- O. High absorption, low mix time and stability, slack and sticky dough handling, lacking in volume, no improvement at 62% absorption, poor overall performance.

Notes: A, G, H, J, N, and O conducted sponge and dough bake tests

MICRO-QUALITY ANALYSIS

Entry_Code	Entry_ID	Entry_No	Breeding Programs	Locations*
22-AP2409	SY Monument	2409	Check	AP
22-AP2410	Jagalene	2410	Check	AP
22-AP2411	LCH18-0027	2411	Limagrain	AP
22-AP2412	TX16M9216	2412	Texas A&M College Station	AP
22-AP2413	BASF7	2413	BASF	AP
22-AP2414	BASF12	2414	BASF	AP
22-AP2415	WB4523	2415	Bayer/WestBred	AP
22-AP2416	WB0433004	2416	Bayer/WestBred	AP
22-AP2417	OK18510	2417	OSU	AP
22-AP2418	OK16107125C-17HR-2	2418	OSU	AP
22-AP2419	OKP17D101A666	2419	OSU	AP
22-AP2420	KS18H111-3	2420	KSU-Hays	AP
22-AP2421	CO16SF027	2421	CSU	AP
22-AP2422	CO18D297R	2422	CSU	AP
22-AP2423	KS13DH0041-35	2423	KSU-Manhhatan	AP
22-KH2409	SY Monument	2409	Check	КН
22-KH2410	Jagalene	2410	Check	КН
22-KH2411	LCH18-0027	2411	Limagrain	КН
22-KH2412	TX16M9216	2412	Texas A&M College Station	КН
22-KH2413	BASF7	2413	BASF	КН
22-KH2414	BASF12	2414	BASF	КН
22-KH2415	WB4523	2415	Bayer/WestBred	КН
22-KH2416	WB0433004	2416	Bayer/WestBred	КН
22-KH2417	OK18510	2417	OSU	КН
22-KH2418	OK16107125C-17HR-2	2418	OSU	КН
22-KH2419	OKP17D101A666	2419	OSU	КН
22-KH2420	KS18H111-3	2420	KSU-Hays	КН
22-KH2421	CO16SF027	2421	CSU	КН
22-KH2422	CO18D297R	2422	CSU	КН
22-KH2423	KS13DH0041-35	2423	KSU-Manhhatan	КН
22-LM2409	SY Monument	2409	Check	LM
22-LM2410	Jagalene	2410	Check	LM
22-LM2411	LCH18-0027	2411	Limagrain	LM
22-LM2412	TX16M9216	2412	Texas A&M College Station	LM
22-LM2413	BASF7	2413	BASF	LM
22-LM2414	BASF12	2414	BASF	LM
22-LM2415	WB4523	2415	Bayer/WestBred	LM
22-LM2416	WB0433004	2416	Bayer/WestBred	LM
22-LM2417	OK18510	2417	OSU	LM
22-LM2418	OK16107125C-17HR-2	2418	OSU	LM
22-LM2419	OKP17D101A666	2419	OSU	LM
22-LM2410	KS18H111-3	2415	KSU-Hays	LM
22-LM2420	CO16SF027	2420	CSU	LM
22-LM2421	CO18D297R	2421	CSU	LM
22-LM2422	KS13DH0041-35	2422	KSU-Manhhatan	LM

Entry_Code	Entry_ID	Entry_No	Breeding Programs	Locations*
22-OK2409	SY Monument	2409	Check	OK
22-OK2410	Jagalene	2410	Check	ОК
22-OK2411	LCH18-0027	2411	Limagrain	OK
22-OK2412	TX16M9216	2412	Texas A&M College Station	OK
22-OK2413	BASF7	2413	BASF	OK
22-OK2414	BASF12	2414	BASF	OK
22-OK2415	WB4523	2415	Bayer/WestBred	OK
22-OK2416	WB0433004	2416	Bayer/WestBred	OK
22-OK2417	OK18510	2417	OSU	OK
22-OK2418	OK16107125C-17HR-2	2418	OSU	OK
22-OK2419	OKP17D101A666	2419	OSU	ОК
22-OK2420	KS18H111-3	2420	KSU-Hays	ОК
22-OK2421	CO16SF027	2421	CSU	ОК
22-OK2422	CO18D297R	2422	CSU	ОК
22-OK2423	KS13DH0041-35	2423	KSU-Manhhatan	OK
22-CO2409	SY Monument	2409	Check	CO
22-CO2410	Jagalene	2410	Check	CO
22-CO2411	LCH18-0027	2411	Limagrain	CO
22-CO2412	TX16M9216	2412	Texas A&M College Station	CO
22-CO2413	BASF7	2413	BASF	CO
22-CO2414	BASF12	2414	BASF	CO
22-CO2415	WB4523	2415	Bayer/WestBred	CO
22-CO2416	WB0433004	2416	Bayer/WestBred	CO
22-CO2417	OK18510	2417	OSU	CO
22-CO2418	OK16107125C-17HR-2	2418	OSU	СО
22-CO2419	OKP17D101A666	2419	OSU	CO
22-CO2420	KS18H111-3	2420	KSU-Hays	CO
22-CO2421	CO16SF027	2421	CSU	CO
22-CO2422	CO18D297R	2422	CSU	CO
22-CO2423	KS13DH0041-35	2423	KSU-Manhhatan	CO
22-BF2409	SY Monument	2409	Check	BF
22-BF2410	Jagalene	2410	Check	BF
22-BF2411	LCH18-0027	2411	Limagrain	BF
22-BF2412	TX16M9216	2412	Texas A&M College Station	BF
22-BF2413	BASF7	2413	BASF	BF
22-BF2414	BASF12	2414	BASF	BF
22-BF2415	WB4523	2415	Bayer/WestBred	BF
22-BF2416	WB0433004	2416	Bayer/WestBred	BF
22-BF2417	OK18510	2417	OSU	BF
22-BF2418	OK16107125C-17HR-2	2418	OSU	BF
22-BF2419	OKP17D101A666	2419	OSU	BF
22-BF2420	KS18H111-3	2420	KSU-Hays	BF
22-BF2421	CO16SF027	2421	CSU	BF
22-BF2422	CO18D297R	2422	CSU	BF
22-BF2423	KS13DH0041-35	2423	KSU-Manhhatan	BF

Entry_Code	Entry_ID	Entry_No	Breeding Programs	Locations*
22-TB2409	SY Monument	2409	Check	ТВ
22-TB2410	Jagalene	2410	Check	ТВ
22-TB2411	LCH18-0027	2411	Limagrain	ТВ
22-TB2412	TX16M9216	2412	Texas A&M College Station	ТВ
22-TB2413	BASF7	2413	BASF	ТВ
22-TB2414	BASF12	2414	BASF	ТВ
22-TB2415	WB4523	2415	Bayer/WestBred	ТВ
22-TB2416	WB0433004	2416	Bayer/WestBred	ТВ
22-TB2417	OK18510	2417	OSU	ТВ
22-TB2418	OK16107125C-17HR-2	2418	OSU	ТВ
22-TB2419	OKP17D101A666	2419	OSU	ТВ
22-TB2420	KS18H111-3	2420	KSU-Hays	ТВ
22-TB2421	CO16SF027	2421	CSU	ТВ
22-TB2422	CO18D297R	2422	CSU	ТВ
22-TB2423	KS13DH0041-35	2423	KSU-Manhhatan	ТВ
	KH=KSU-Hays; LM=Lima	grain; OK=OSU; CO=C	SU; BF=BASF	
TB=Texas A&	VI Bushland.			

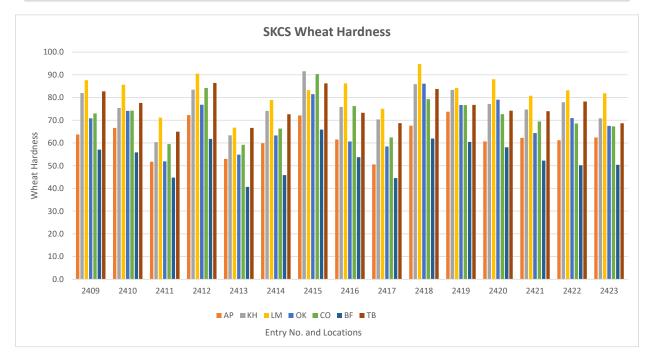
1. LOCATIONS AND ENTRIES

A. There are 7 locations:

Agripro = AP; KSU-Hays = KH; Limagrain = LM; OSU = OK; CSU = CO; BASF = BF;

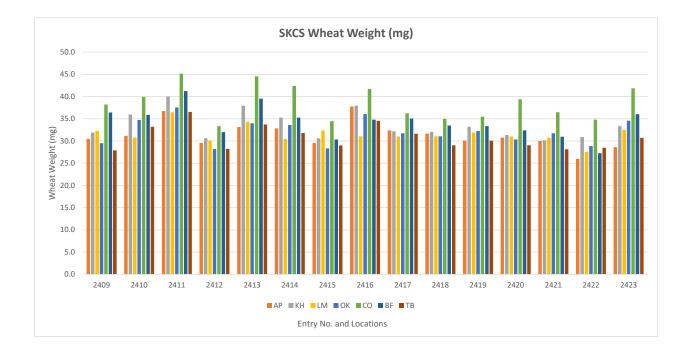
Texas A&M Bushland = TB.

B. There are 11 entries grown in each of locations:

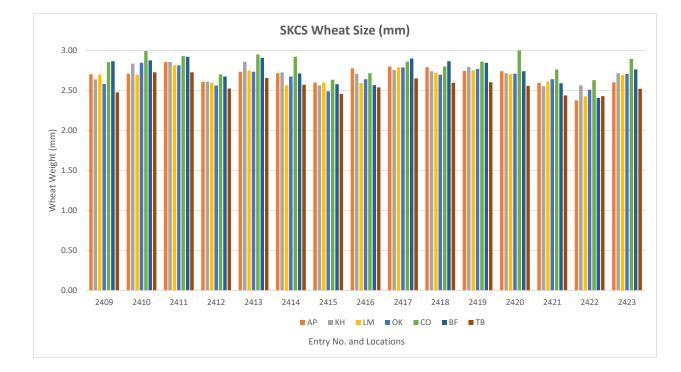

```
SY Monument = 2409
Jagalene = 2410
LCH18-9027 = 2411
TX16M9216 = 2412
BASF7 = 2413
BASF12 = 2414
WB4523 = 2415
WB0433004 = 2416
OK18510 = 2417
OK16107125C-17HR-2 = 2418
OKP17D101A666 = 2419
KS18H111-3 = 2420
CO16SF027 = 2421
CO18D297R = 2422
KS13DH0041-35 = 2423
```

2. SKCS SINGLE KERNEL INFORMATION

A. Kernel Hardness

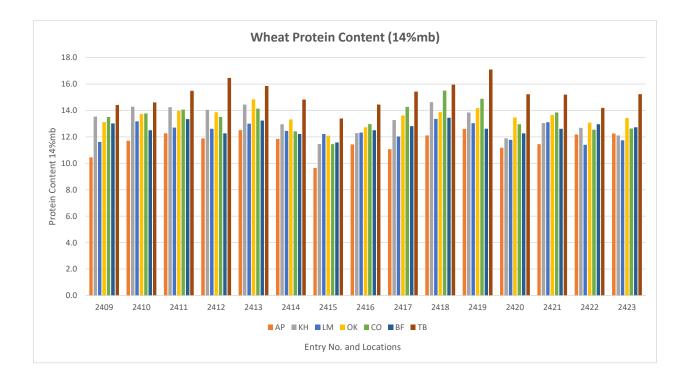

			SKCS W	heat Ker	nel Harc	Iness			
				LOCATIONS	5				
Entry No.	AP	КН	LM	ОК	со	BF	ТВ	Avg	Std
2409	63.7	82.0	87.6	70.8	73.0	57.1	82.7	73.8	11.00
2410	66.6	75.4	85.6	74.1	74.2	55.9	77.6	72.8	9.34
2411	51.7	60.3	71.2	51.9	59.5	44.7	64.9	57.8	8.96
2412	72.2	83.4	90.4	76.8	84.2	61.8	86.4	79.3	9.81
2413	53.0	63.4	66.7	54.9	59.2	40.7	66.6	57.8	9.26
2414	59.9	74.1	78.9	63.3	66.3	45.8	72.6	65.8	11.01
2415	72.1	91.5	83.3	81.4	90.3	65.8	86.2	81.5	9.46
2416	61.5	75.9	86.2	60.6	76.2	53.7	73.3	69.6	11.34
2417	50.5	70.3	75.0	58.5	62.4	44.5	68.7	61.4	11.05
2418	67.6	85.9	94.7	86.1	79.3	61.9	83.7	79.9	11.41
2419	73.7	83.4	84.2	76.7	76.7	60.4	76.8	76.0	7.86
2420	60.7	77.2	88.0	79.0	72.7	58.1	74.1	72.8	10.45
2421	62.3	74.7	80.8	64.3	69.4	52.2	73.9	68.2	9.49
2422	61.2	77.9	83.1	71.0	68.5	50.2	78.2	70.0	11.38
2423	62.4	70.8	81.8	67.5	67.3	50.4	68.6	67.0	9.43
Avg.	62.6	76.4	82.5	69.1	71.9	53.5	75.6		
Std	7.18	8.26	7.30	10.11	8.73	7.48	6.90		

AP=Agripro; KH=KSU-Hays; LM=Limagrain; OK=OSU; CO=CSU; BF=BASF; TB=Texas A&M Bushland.

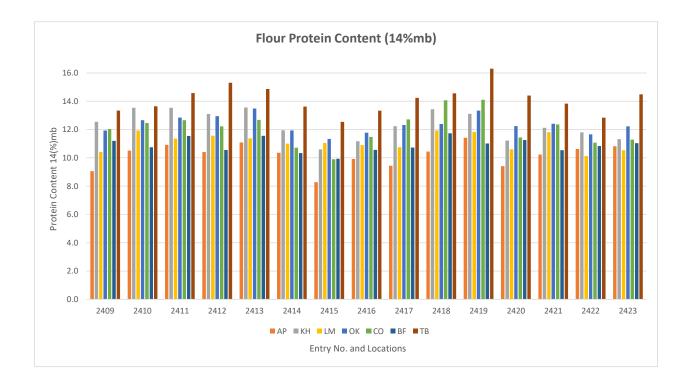

B. Kernel Weight (mg)

	SKCS Wheat Kernel Weight (mg)											
			LOCA	TIONS								
Entry No.	AP	КН	LM	ОК	со	BF	ТВ	Avg	Std			
2409	30.5	31.9	32.3	29.5	38.2	36.4	27.9	32.4	3.71			
2410	31.2	36.0	30.8	34.7	39.9	35.9	33.2	34.5	3.17			
2411	36.7	40.0	36.4	37.6	45.2	41.2	36.5	39.1	3.26			
2412	29.6	30.6	30.1	28.2	33.3	32.0	28.2	30.3	1.89			
2413	33.1	37.9	34.4	34.0	44.6	39.5	33.7	36.7	4.20			
2414	32.9	35.3	30.5	33.6	42.4	35.3	31.8	34.5	3.89			
2415	29.5	30.6	32.4	28.3	34.5	30.3	29.0	30.7	2.12			
2416	37.8	38.0	31.1	36.1	41.7	34.8	34.6	36.3	3.34			
2417	32.4	32.2	31.0	31.7	36.3	35.1	31.6	32.9	1.97			
2418	31.7	32.1	31.1	31.1	35.0	33.5	29.0	31.9	1.90			
2419	30.1	33.2	31.9	32.2	35.5	33.3	30.1	32.3	1.92			
2420	30.8	31.3	31.0	30.4	39.4	32.4	29.0	32.0	3.39			
2421	30.0	30.2	30.7	31.7	36.5	31.0	28.1	31.2	2.59			
2422	26.0	30.9	27.6	28.9	34.8	27.3	28.5	29.1	2.93			
2423	28.6	33.3	32.5	34.6	41.9	36.0	30.7	33.9	4.26			
Avg.	31.4	33.6	31.6	32.2	38.6	34.3	30.8					
Std	2.98	3.13	1.99	2.87	3.85	3.53	2.68					

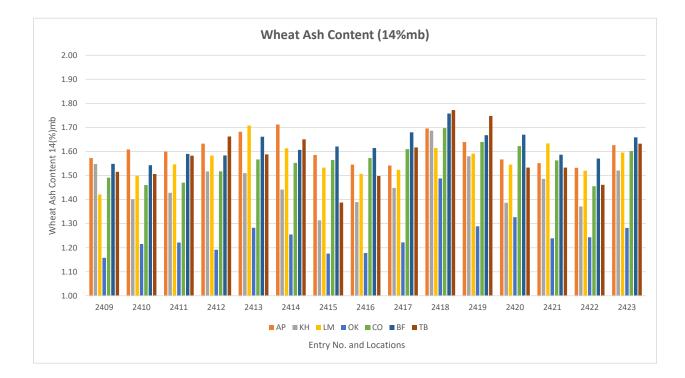
C. Kernel Size


	SKCS Wheat Kernel Size (mm)										
				OCATION	S						
Entry No.	AP	КН	LM	ОК	со	BF	ТВ	Avg	Std		
2409	2.70	2.64	2.70	2.58	2.85	2.86	2.48	2.69	0.14		
2410	2.71	2.83	2.70	2.85	2.99	2.88	2.73	2.81	0.11		
2411	2.85	2.86	2.82	2.81	2.93	2.92	2.73	2.85	0.07		
2412	2.61	2.61	2.60	2.56	2.70	2.67	2.53	2.61	0.06		
2413	2.73	2.86	2.75	2.73	2.95	2.91	2.65	2.80	0.11		
2414	2.71	2.72	2.56	2.68	2.92	2.71	2.57	2.70	0.12		
2415	2.60	2.56	2.60	2.49	2.63	2.58	2.46	2.56	0.06		
2416	2.78	2.71	2.59	2.64	2.71	2.57	2.54	2.65	0.09		
2417	2.80	2.76	2.79	2.79	2.86	2.90	2.65	2.79	0.08		
2418	2.79	2.74	2.72	2.70	2.80	2.86	2.60	2.74	0.09		
2419	2.74	2.79	2.75	2.77	2.86	2.85	2.60	2.77	0.08		
2420	2.74	2.71	2.70	2.71	3.00	2.74	2.56	2.74	0.13		
2421	2.60	2.55	2.61	2.64	2.76	2.59	2.44	2.60	0.10		
2422	2.38	2.56	2.43	2.51	2.63	2.41	2.43	2.48	0.09		
2423	2.60	2.71	2.70	2.71	2.89	2.76	2.52	2.70	0.12		
Avg.	2.69	2.71	2.67	2.68	2.83	2.75	2.56				
Std	0.12	0.10	0.10	0.11	0.12	0.16	0.10				

3. PROTEN CONTENT

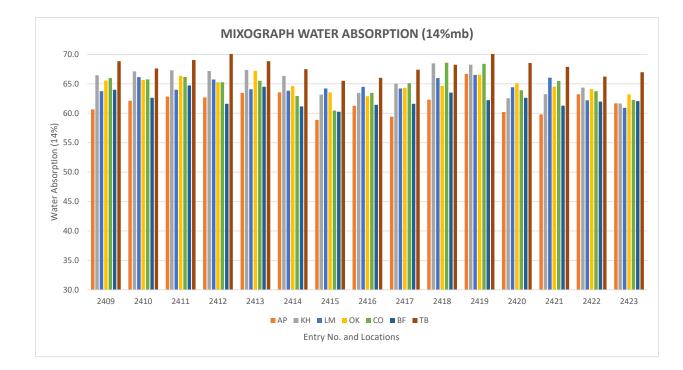

A. Wheat Protein

		Whe	at Prote	ein Conte	ent (14%	mb)			
				LOCATIONS	S				
Entry No.	AP	КН	LM	ОК	со	BF	ТВ	Avg	Std
2409	10.4	13.5	11.6	13.1	13.5	13.0	14.4	12.8	1.34
2410	11.7	14.3	13.2	13.7	13.8	12.5	14.6	13.4	1.02
2411	12.3	14.2	12.7	14.0	14.1	13.3	15.5	13.7	1.07
2412	11.9	14.0	12.6	13.9	13.5	12.3	16.5	13.5	1.53
2413	12.5	14.4	13.0	14.8	14.1	13.2	15.8	14.0	1.16
2414	11.9	13.0	12.5	13.3	12.4	12.2	14.8	12.9	0.99
2415	9.7	11.5	12.2	12.1	11.4	11.6	13.4	11.7	1.13
2416	11.4	12.3	12.3	12.7	13.0	12.5	14.4	12.7	0.92
2417	11.1	13.3	12.0	13.6	14.3	12.8	15.4	13.2	1.43
2418	12.1	14.6	13.4	13.9	15.5	13.4	16.0	14.1	1.33
2419	12.6	13.8	13.0	14.2	14.9	12.6	17.1	14.0	1.59
2420	11.2	11.9	11.8	13.5	13.0	12.3	15.2	12.7	1.36
2421	11.5	13.0	13.1	13.7	13.8	12.6	15.2	13.3	1.15
2422	12.2	12.7	11.4	13.1	12.6	13.0	14.2	12.7	0.86
2423	12.3	12.1	11.7	13.4	12.6	12.7	15.2	12.9	1.17
Avg.	11.6	13.2	12.4	13.5	13.5	12.7	15.2		
Std	0.81	0.99	0.63	0.64	1.04	0.49	0.94		

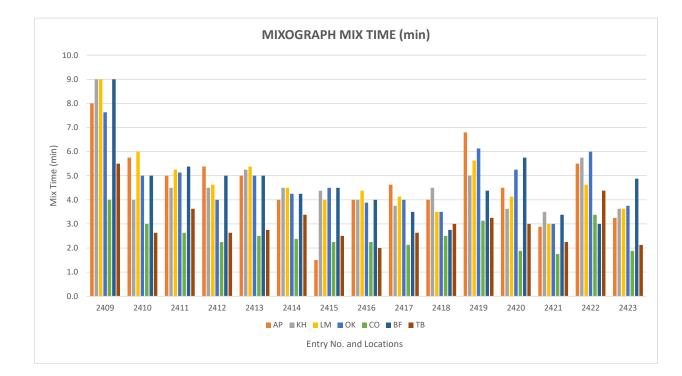

B. Flour Protein

		Fl	our Prot	ein Cont	ent (14%	%)			1
					S				
Entry No.	AP	КН	LM	ОК	со	BF	ТВ	Avg	Std
2409	9.1	12.6	10.4	11.9	12.0	11.2	13.3	11.5	1.43
2410	10.5	13.5	11.9	12.7	12.5	10.8	13.6	12.2	1.24
2411	10.9	13.5	11.4	12.8	12.7	11.5	14.6	12.5	1.31
2412	10.4	13.1	11.6	12.9	12.2	10.6	15.3	12.3	1.70
2413	11.1	13.6	11.4	13.5	12.7	11.6	14.9	12.7	1.40
2414	10.4	11.9	11.0	11.9	10.7	10.3	13.6	11.4	1.18
2415	8.3	10.6	11.0	11.3	9.9	9.9	12.5	10.5	1.34
2416	9.9	11.2	10.9	11.8	11.5	10.6	13.3	11.3	1.08
2417	9.4	12.2	10.8	12.3	12.7	10.7	14.2	11.8	1.58
2418	10.4	13.4	11.9	12.4	14.1	11.7	14.6	12.7	1.45
2419	11.4	13.1	11.8	13.3	14.1	11.0	16.3	13.0	1.83
2420	9.4	11.2	10.6	12.2	11.4	11.3	14.4	11.5	1.54
2421	10.2	12.1	11.8	12.4	12.4	10.5	13.8	11.9	1.22
2422	10.6	11.8	10.1	11.7	11.1	10.8	12.8	11.3	0.90
2423	10.8	11.3	10.5	12.2	11.3	11.0	14.5	11.7	1.35
Avg.	10.2	12.4	11.1	12.4	12.1	10.9	14.1		
Std	0.84	1.00	0.59	0.61	1.15	0.50	0.98		

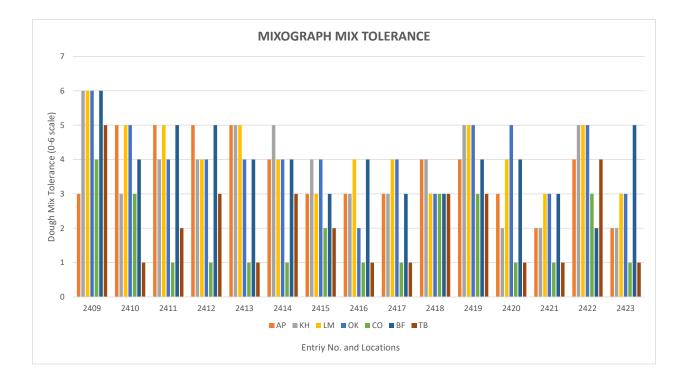
4. Wheat Ash


		V	Wheat A	sh Conte	nt (14%)			1
				LOCATION	5				
Entry No.	AP	КН	LM	ОК	СО	BF	ТВ	Avg	Std
2409	1.57	1.55	1.42	1.16	1.49	1.55	1.52	1.46	0.14
2410	1.61	1.40	1.50	1.22	1.46	1.54	1.51	1.46	0.13
2411	1.60	1.43	1.55	1.22	1.47	1.59	1.58	1.49	0.14
2412	1.63	1.52	1.58	1.19	1.52	1.58	1.66	1.53	0.16
2413	1.68	1.51	1.71	1.28	1.57	1.66	1.59	1.57	0.15
2414	1.71	1.44	1.61	1.25	1.55	1.61	1.65	1.55	0.15
2415	1.59	1.31	1.53	1.18	1.56	1.62	1.39	1.45	0.17
2416	1.55	1.39	1.51	1.18	1.57	1.61	1.50	1.47	0.15
2417	1.54	1.45	1.52	1.22	1.61	1.68	1.62	1.52	0.15
2418	1.70	1.69	1.61	1.49	1.70	1.76	1.77	1.67	0.10
2419	1.64	1.58	1.59	1.29	1.64	1.67	1.75	1.59	0.15
2420	1.57	1.39	1.55	1.33	1.62	1.67	1.53	1.52	0.12
2421	1.55	1.49	1.63	1.24	1.56	1.59	1.53	1.51	0.13
2422	1.53	1.37	1.52	1.24	1.46	1.57	1.46	1.45	0.11
2423	1.63	1.52	1.60	1.28	1.60	1.66	1.63	1.56	0.13
Avg.	1.61	1.47	1.56	1.25	1.56	1.62	1.58		
Std	0.06	0.10	0.07	0.08	0.07	0.06	0.10		

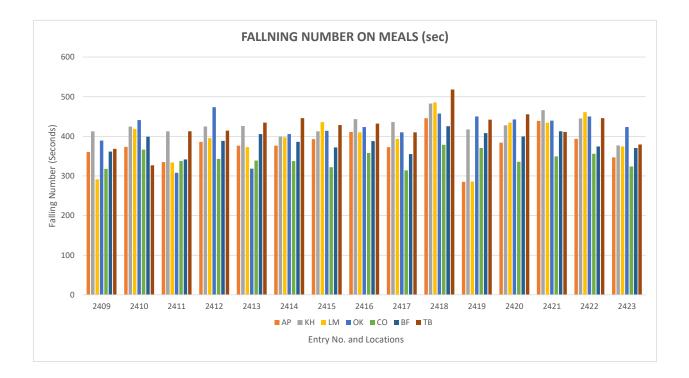
5. MIXOGRAPH TEST RESULTS


A. Mixograph Water Absorption

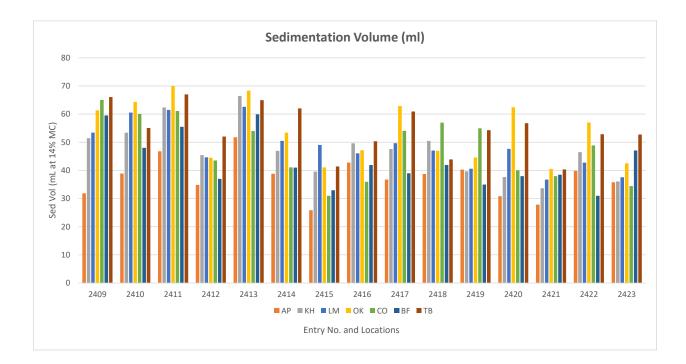
	Mixograph Water Absorption (14%mb)										
			L	OCATION	S						
Entry No.	AP	КН	LM	ОК	СО	BF	ТВ	Avg	Std		
2409	60.7	66.5	63.8	65.5	66.0	64.0	68.8	65.0	2.57		
2410	62.1	67.1	66.1	65.7	65.8	62.6	67.6	65.3	2.12		
2411	62.8	67.3	64.0	66.3	66.2	64.7	69.0	65.8	2.10		
2412	62.7	67.2	65.7	65.3	65.3	61.6	70.1	65.4	2.81		
2413	63.5	67.3	64.1	67.2	65.5	64.5	68.8	65.8	2.00		
2414	63.6	66.4	63.8	64.6	62.9	61.2	67.5	64.3	2.12		
2415	58.9	63.2	64.2	63.5	60.5	60.3	65.5	62.3	2.43		
2416	61.3	63.4	64.5	62.9	63.5	61.4	66.0	63.3	1.66		
2417	59.4	65.0	64.2	64.3	65.1	61.6	67.4	63.9	2.60		
2418	62.3	68.5	66.0	64.7	68.6	63.5	68.2	66.0	2.57		
2419	66.7	68.3	66.5	66.5	68.4	62.2	73.0	67.4	3.22		
2420	60.2	62.6	64.4	65.1	63.9	62.6	68.5	63.9	2.59		
2421	59.8	63.2	66.0	64.5	65.5	61.3	67.9	64.0	2.80		
2422	63.2	64.4	62.2	64.1	63.7	62.0	66.2	63.7	1.44		
2423	61.7	61.7	60.9	63.2	62.3	62.1	67.0	62.7	2.02		
Avg.	61.9	65.5	64.4	64.9	64.9	62.4	68.1				
Std	2.00	2.23	1.52	1.23	2.15	1.30	1.84				


B. Mixograph Mix Time

Mixograph Mix Time (min)							1		
				LOCATION	S				
Entry No.	АР	КН	LM	ОК	со	BF	ТВ	Avg	Std
2409	8.0	9.0	9.0	7.6	4.0	9.0	5.5	7.4	1.97
2410	5.8	4.0	6.0	5.0	3.0	5.0	2.6	4.5	1.31
2411	5.0	4.5	5.3	5.1	2.6	5.4	3.6	4.5	1.02
2412	5.4	4.5	4.6	4.0	2.3	5.0	2.6	4.1	1.19
2413	5.0	5.3	5.4	5.0	2.5	5.0	2.8	4.4	1.23
2414	4.0	4.5	4.5	4.3	2.4	4.3	3.4	3.9	0.77
2415	1.5	4.4	4.0	4.5	2.3	4.5	2.5	3.4	1.26
2416	4.0	4.0	4.4	3.9	2.3	4.0	2.0	3.5	0.96
2417	4.6	3.8	4.1	4.0	2.1	3.5	2.6	3.5	0.88
2418	4.0	4.5	3.5	3.5	2.5	2.8	3.0	3.4	0.70
2419	6.8	5.0	5.6	6.1	3.1	4.4	3.3	4.9	1.40
2420	4.5	3.6	4.1	5.3	1.9	5.8	3.0	4.0	1.32
2421	2.9	3.5	3.0	3.0	1.8	3.4	2.3	2.8	0.62
2422	5.5	5.8	4.6	6.0	3.4	3.0	4.4	4.7	1.17
2423	3.3	3.6	3.6	3.8	1.9	4.9	2.1	3.3	1.03
Avg.	4.7	4.7	4.8	4.7	2.5	4.7	3.0		
Std	1.58	1.36	1.43	1.20	0.62	1.49	0.92		


C. Mixograph Mix Tolerance

	Mixograph Mix Tolerance								
			l	OCATION	S				
Entry No.	АР	КН	LM	ОК	со	BF	ТВ	Avg	Std
2409	3	6	6	6	4	6	5	5.1	1.2
2410	5	3	5	5	3	4	1	3.7	1.5
2411	5	4	5	4	1	5	2	3.7	1.6
2412	5	4	4	4	1	5	3	3.7	1.4
2413	5	5	5	4	1	4	1	3.6	1.8
2414	4	5	4	4	1	4	3	3.6	1.3
2415	3	4	3	4	2	3	2	3.0	0.8
2416	3	3	4	2	1	4	1	2.6	1.3
2417	3	3	4	4	1	3	1	2.7	1.3
2418	4	4	3	3	3	3	3	3.3	0.5
2419	4	5	5	5	3	4	3	4.1	0.9
2420	3	2	4	5	1	4	1	2.9	1.6
2421	2	2	3	3	1	3	1	2.1	0.9
2422	4	5	5	5	3	2	4	4.0	1.2
2423	2	2	3	3	1	5	1	2.4	1.4
Avg.	3.7	3.8	4.2	4.1	1.8	3.9	2.1		
Std	1.05	1.26	0.94	1.03	1.08	1.03	1.30		


6. FALLING NUMBER TEST

	Falling Number on Meals (sec)								
					S				
Entry No.	AP	КН	LM	ОК	со	BF	ТВ	Avg	Std
2409	361	413	292	390	318	362	369	357	41
2410	374	425	419	441	367	399	327	393	40
2411	335	413	334	308	338	342	413	355	41
2412	386	425	396	474	343	389	415	404	40
2413	377	426	373	319	339	406	435	382	43
2414	377	399	398	406	338	386	446	393	33
2415	393	413	436	414	322	372	429	397	39
2416	411	444	410	424	358	388	432	409	29
2417	373	436	394	410	314	355	410	385	41
2418	446	483	486	458	379	426	518	456	46
2419	285	418	286	450	371	408	442	380	69
2420	384	428	435	443	336	400	456	411	41
2421	439	466	435	440	350	413	411	422	37
2422	394	445	461	450	356	375	446	418	42
2423	347	377	375	424	324	371	380	371	31
Avg.	379	427	395	416	343	386	422		
Std	39	26	57	47	20	23	43		

7. SEDIMENTATION TEST

	Sedimentation Volume (ml)								
				LOCATIONS	5				
Entry No.	АР	КН	LM	ОК	СО	BF	ТВ	Avg	Std
2409	31.9	51.5	53.4	61.3	65.1	59.5	66.1	55.5	11.78
2410	38.9	53.4	60.5	64.3	60.1	48.0	55.1	54.3	8.67
2411	46.8	62.4	61.5	70.0	61.1	55.5	67.0	60.6	7.64
2412	34.9	45.4	44.6	44.5	43.5	37.0	52.0	43.1	5.70
2413	51.8	66.4	62.6	68.4	54.0	59.9	65.0	61.2	6.29
2414	38.8	47.0	50.5	53.4	41.1	41.0	62.1	47.7	8.31
2415	25.8	39.6	49.1	41.1	31.0	33.0	41.4	37.3	7.80
2416	42.8	49.6	46.1	47.2	35.9	41.9	50.4	44.8	5.03
2417	36.8	47.6	49.7	62.9	54.1	39.0	60.9	50.1	10.03
2418	38.7	50.5	47.1	47.0	57.0	42.0	43.9	46.6	5.97
2419	40.3	39.7	40.6	44.6	54.9	35.0	54.3	44.2	7.65
2420	30.8	37.6	47.6	62.4	40.0	38.0	56.8	44.8	11.39
2421	27.8	33.7	36.7	40.6	37.9	38.5	40.3	36.5	4.48
2422	39.8	46.5	42.7	57.0	48.9	31.0	52.9	45.6	8.66
2423	35.8	36.1	37.6	42.5	34.5	47.1	52.7	40.9	6.86
Avg.	37.4	47.1	48.7	53.8	47.9	43.1	54.7		
Std	6.82	9.22	8.11	10.48	10.89	9.15	8.53		

MONTANA

- 22-2424 22-2425 22-2426
- 22-2420
- 22-2427
- 22-2428

SY Monument_CK Yellowstone_CK MTFH19132_MT MTS1908_MT MTCL19151_MT

Description of Test Plots and Breeder Entries

Montana – Suchismita (Sue) Mondal

Growing conditions

For the 2022 Northern Wheat Quality Council (WQC), we planted 5 entries with two checks (Yellowstone and SY Monument) at Post Research Farm, Bozeman, MT. The trial was sown on 29th September, 2021 with pre-sowing application fertilizer. Fall of 2021 was characterized by severe drought conditions, due to which there was no emergence in Fall prior to snow cover. In spring 2022, emergence was normal. With rains coming in late spring and cool temperatures across the growing season, growth and development were normal. No diseases were observed through the season, though in some varieties physiological leaf spot was observed. Due to rains and high wind, lodging was observed in test plots. Plots were harvested later than normal due to longer growing season.

MSU Variety Description

MTFH19132 is a hard red winter wheat developed from a three-way cross MT1078//Colter/Emerson for the purpose of FHB resistance. MTFH19132 is a tall early maturing line which shows moderate resistance to FHB. It has good adaptation in terms of yield and agronomic performance in eastern and high rainfall area of north western Montana. It is a hollow line and therefore is not suitable for sawfly affected regions in Montana. MTFH19132 has an average test weight, protein and baking quality.

MTS1908 is a hard red winter wheat derived from the three-way cross MTS0819//08X350-A6/Warhorse. It is a solid-stem variety with high solid stem scores and very low sawfly cutting in multiple years of testing under sawfly pressure. It is a medium to late maturing tall line that has shown good adaptation and yield potential in Golden Triangle region of Montana where sawfly pressure is high. It has good resistance to stripe and stem rust. MTS1908 is a low PPO line, with average test weight, protein and baking quality.

MTCL19151 is a hard red winter wheat line derived from a cross of MT0871/06X445B1-2. The line 06X445B1-2 is a sister line of SY Clearstone (segregated for two *als* genes conveying tolerance to imidazolinone herbicide). It has good winter hardiness. Agronomically, it has medium height, early heading line with medium maturity. MTCL19151 shows good yield potential across locations and years of testing in Montana. However, it is a hollow line and therefore primarily targeted for areas with low or no sawfly pressure. It has good resistance to stripe rust, though moderately susceptible to stem rust. MTCL19151 is a low PPO line with average mill and bake quality.

Montana:	2022	(Small-Scale)	Samples
----------	------	---------------	---------

Test entry number	22-2424	22-2425	22-2426
Sample identification	SY Monument	Yellowstone	MTFH19132
	Wheat Data		·
GIPSA classification	1 HRW	1 HRW	1 HRW
Test weight (lb/bu)	63.2	62.8	62.`1
Hectoliter weight (kg/hl)	83.1	82.6	81.7
1000 kernel weight (gm)	32.7	33.7	30.6
Wheat kernel size (Rotap)			
Over 7 wire (%)	77.9	72.6	60.3
Over 9 wire (%)	21.8	27.1	39.1
Through 9 wire (%)	0.3	0.3	0.6
Single kernel (skcs) ^a			
Hardness (avg /s.d)	68.2/16.9	68.6/15.0	65.7/17.4
Weight (mg) (avg/s.d)	32.7/10.5	33.7/10.0	30.6/9.5
Diameter (mm)(avg/s.d)	2.67/0.39	2.66/0.34	2.53/0.37
Moisture (%) (avg/s.d)	9.2/0.9	9.6/0.7	9.3/0.8
SKCS distribution	02-08-20-70-01 Hard	02-05-18-75-01 Hard	03-09-23-65-01 Hard
Classification	Halu	Haiu	Паги
	10.0	10.0	10.0
Wheat protein (12% mb)	12.6	12.9	13.2
Wheat ash (12% mb)	1.37	1.48	1.42
	ing and Flour Qu	ality Data	
Flour yield (%, str. grade)	75 4	75.0	70 5
Miag Multomat Mill	75.4 68.2	75.6 67.6	76.5 68.9
Quadrumat Sr. Mill	00.2	07.0	00.9
		16 -	10 -
Flour moisture (%)	12.0	12.7	12.5
Flour protein (14% mb)	11.4	11.8	12.0
Flour ash (14% mb)	0.42	0.46	0.41
Rapid Visco-Analyser			
Peak Time (min)	6.2	6.4	6.4
Peak Viscosity (RVU)	177.8	199.0	209.6
Breakdown (RVU)	50.8	55.7	60.5
Final Viscosity at 13 min (RVU)	229.8	247.9	255.0
Minolta color meter			
L*	91.62	91.09	91.46
a*	-1.54	-1.33	-1.13
b*	8.84	8.77	7.93
PPO	0.265	0.407	0.631
Falling number (sec)	403	407	393
Damaged Starch			
(Al%)	99.3	98.5	98.9
(AACC76-31)	9.1	8.4	8.7

^as.d. = standard deviation; skcs = Single Kernel Characterization System 4100.

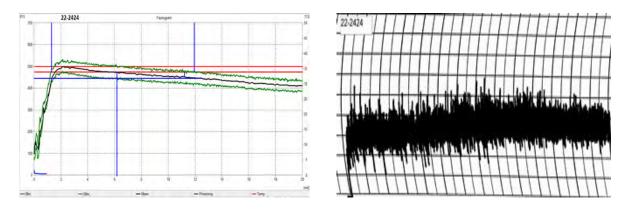
Montana: 2022 (Small-Scale) Samples (Continued)

Test entry number	22-2427	22-2428
Sample identification	MTS1908	MTCL19151
	heat Data	
GIPSA classification	1 HRW	1 HRW
Test weight (lb/bu)	64.4	64.0
Hectoliter weight (kg/hl)	84.6	84.1
	0110	0111
1000 kernel weight (gm)	31.3	30.7
Wheat kernel size (Rotap)		
Over 7 wire (%)	67.3	70.0
Over 9 wire (%)	32.3	29.8
Through 9 wire (%)	0.4	0.2
Single kernel (skcs) ^a		
Hardness (avg /s.d)	69.2/15.4	69.1/17.1
Weight (mg) (avg/s.d)	31.3/8.7	30.7/10.1
Diameter (mm)(avg/s.d)	2.62/0.34	2.69/0.35
Moisture (%) (avg/s.d)	9.0/0.9	9.2/0.8
SKCS distribution	01-05-19-75-01	02-08-19-71-01
Classification	Hard	Hard
Wheat protein (12% mb)	13.4	12.6
Wheat ash (12% mb)	1.37	1.43
	Flour Quality Dat	a
Flour yield (%, str. grade)	70.0	70.0
Miag Multomat Mill	76.8	76.2 68.2
Quadrumat Sr. Mill	69.9	00.2
Flour moisture (%)	12.4	12.1
Flour protein (14% mb)	12.4	11.7
Flour ash (14% mb)	0.39	0.44
Rapid Visco-Analyser		
Peak Time (min)	6.3	6.3
Peak Viscosity (RVU)	198.7	202.3
Breakdown (RVU)	54.3	62.1
Final Viscosity at 13 min (RVU)	257.3	246.3
Minolta color meter		
L*	91.45	91.51
a*	-1.66	-1.52
b*	9.70	8.98
PPO	0.215	0.158
Falling number (sec)	386	425
Damaged Starch		.20
(Al%)	98.9	99.2
(AACC76-31)	8.7	9.0
	0.7	5.0

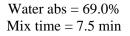
^as.d. = standard deviation; skcs = Single Kernel Characterization System 4100.

Test Entry Number	22-2424	22-2425	22-2426				
Sample Identification	SY Monument	Yellowstone	MTFH19132				
	MIXOGRAPI	4					
Flour Abs (% as-is)	71.3	71.7	71.9				
Flour Abs (14% mb)	69.0	70.3	70.3				
Mix Time (min)	7.5	6.1	6.5				
Mix tolerance (0-6)	5	5	5				
	FARINOGRA	ЪН					
Flour Abs (% as-is)	71.0	69.7	70.9				
Flour Abs (14% mb)	68.7	68.3	69.3				
Peak time (min)	6.2	5.7	7.2				
Mix stability (min)	10.6	8.7	11.8				
Mix Tolerance Index (FU)	23	33	24				
Breakdown time (min)	12.5	10.1	14.6				
	ALVEOGRAF	РН					
P(mm): Tenacity	182	164	192				
L(mm): Extensibility	36	35	46				
G(mm): Swelling index	13.3	13.1	15.1				
W(10 ⁻⁴ J): strength (curve area)	294	245	388				
P/L: curve configuration ratio	5.06	4.69	4.17				
le(P ₂₀₀ /P): elasticity index	0.0	0.0	61.8				
	EXTENSIGRA	PH					
Resist (BU at 45/90/135 min)	528/711/804	500/697/672	509/1021/875				
Extensibility (mm at 45/90/135 min)	122/119/117	142/121/113	131/101/103				
Energy (cm ² at 45/90/135 min)	102/129/128	131/139/112	109/149/123				
Resist max (BU at 45/90/135 min)	671/937/939	742/947/853	658/1323/1067				
Ratio (at 45/90/135 min)	4.3/6.0/6.0	3.5/5.8/5.9	3.9/10.1/8.5				
PROTEIN ANALYSIS							
HMW-GS Composition	2*, 7+9, 5+10	1, 7+8, 5+10	1, 7+8, 5+10				
TPP/TMP	0.96	0.94	1.00				
SI	EDIMENTATION	TEST					
Volume (ml)	65.5	67.6	68.4				

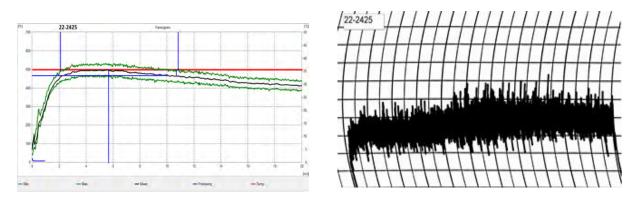
Montana: Physical Dough Tests and Protein Analysis 2022 (Small-Scale) Samples

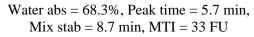

Montana: Physical Dough Tests and Protein Analysis 2022 (Small-Scale) Samples (Continued)

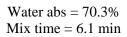
Test Entry Number	22-2427	22-2428				
Sample Identification	MTS1908	MTCL19151				
MIX	OGRAPH					
Flour Abs (% as-is)	73.2	72.6				
Flour Abs (14% mb)	71.7	70.4				
Mix Time (min)	9.5	6.0				
Mix tolerance (0-6)	6	5				
FARI	NOGRAPH					
Flour Abs (% as-is)	70.1	72.6				
Flour Abs (14% mb)	68.5	70.4				
Peak time (min)	6.3	6.0				
Mix stability (min)	16.8	10.4				
Mix Tolerance Index (FU)	16	24				
Breakdown time (min)	15.2	11.4				
ALVEOGRAPH						
P(mm): Tenacity	188	184				
L(mm): Extensibility	33	42				
G(mm): Swelling index	12.8	14.4				
W(10 ⁻⁴ J): strength (curve area)	275	334				
P/L: curve configuration ratio	5.70	4.38				
le(P ₂₀₀ /P): elasticity index	0.0	56.8				
EXTER	NSIGRAPH					
Resist (BU at 45/90/135 min)	635/1283/1334	448/635/725				
Extensibility (mm at 45/90/135 min)	114/92/78	141/133/121				
Energy (cm ² at 45/90/135 min)	108/141/104	111/148/132				
Resist max (BU at 45/90/135 min)	784/1351/1346	635/947/910				
Ratio (at 45/90/135 min)	5.6/13.9/17.2	3.2/4.8/6.0				
PROTEIN ANALYSIS						
HMW-GS Composition	1, 7+8, 5+10	2*, 7+9, 5+10				
TPP/TMP	0.88	0.98				
SEDIMEN	TATION TEST					
Volume (ml)	70.8	69.4				

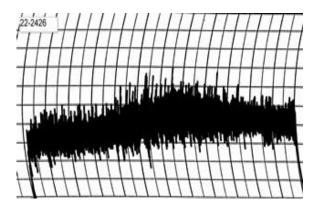

Physical Dough Tests 2022 (Small Scale) Samples – Montana

Farinograms

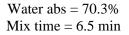

Mixograms



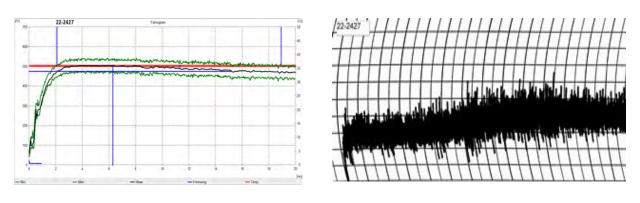

Water abs = 68.7%, Peak time = 6.2 min Mix stab = 10.6 min, MTI = 23 FU

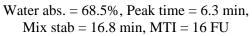


Physical Dough Tests 2022 (Small Scale) Samples – Montana (continued)

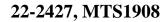


Farinograms

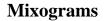

Mixograms

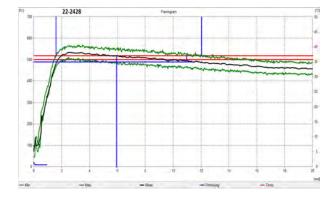


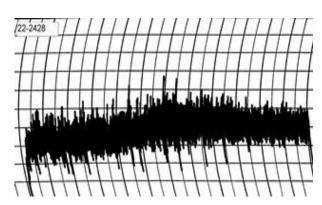
Water abs. = 69.3%, Peak time = 7.2 min, Mix stab = 11.8 min, MTI = 24 FU



22-2426, MTFH19132

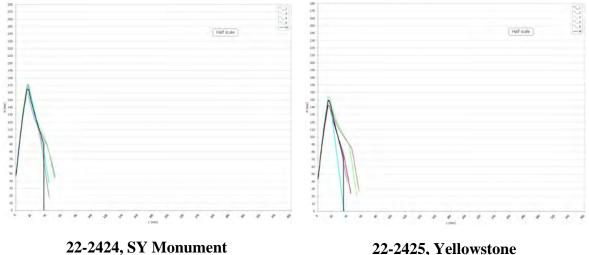



Water abs = 71.7% Mix time = 9.5 min



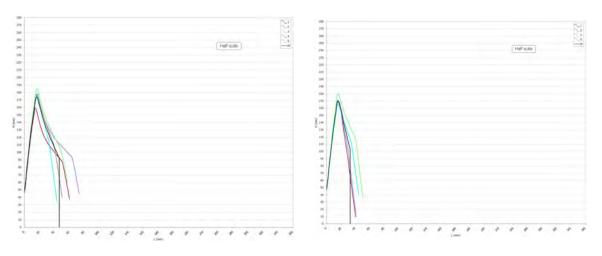
Physical Dough Tests 2022 (Small Scale) Samples – Montana (continued)

Farinograms



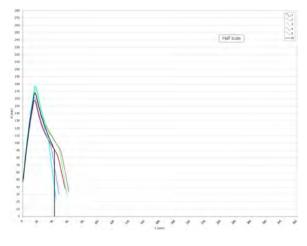
Water abs. = 70.4%, Peak time = 6.0 min, Mix stab = 10.4 min, MTI = 24 FU

Water abs = 70.4%Mix time = 6.0 min

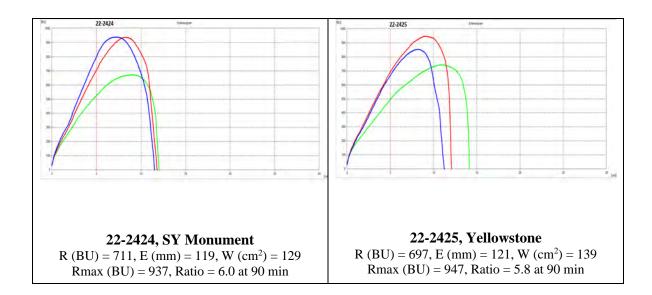

22-2428, MTCL19151

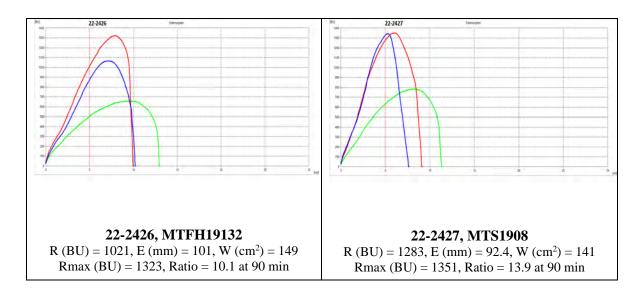
Physical Dough Tests - Alveograph 2022 (Small Scale) Samples – Montana

 $P (mm H_20) = 182, L (mm) = 36, W (10E^{-4}J) = 294$


22-2425, Yellowstone P (mm H₂0) = 164, L (mm) = 35, W (10E⁻⁴J) = 245

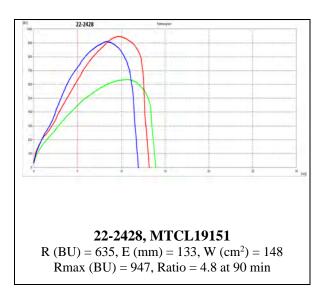
22-2426, MTFH19132 P (mm H₂0) = 192, L (mm) = 46, W (10E⁻⁴J) = 388

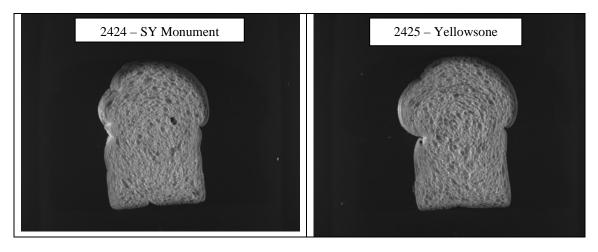

22-2427, MTS1908 P (mm H₂0) = 188, L (mm) = 33, W (10E⁻⁴J) = 275


Physical Dough Tests - Alveograph 2022 (Small Scale) Samples – Montana

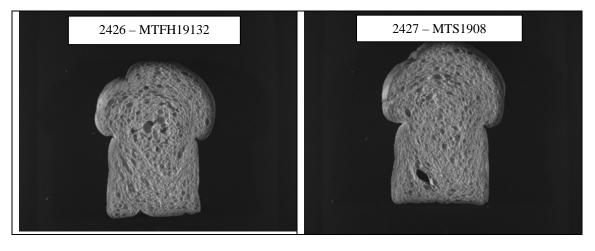
22-2428, MTCL19151 P (mm H₂0) = 184, L (mm) = 42, W (10E⁻⁴J) = 334

Physical Dough Tests - Extensigraph 2022 (Small Scale) Samples – Montana

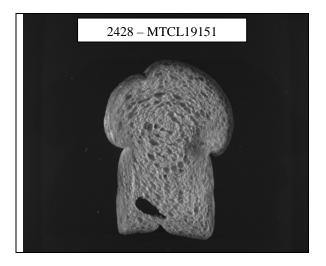



Notes: R (BU) = Resistance; E (mm) = Extensibility; W (cm²) = Energy; Rmax (BU) = Maximum resistance. Green = 45 min, Red = 90 min, and Blue = 135 min.

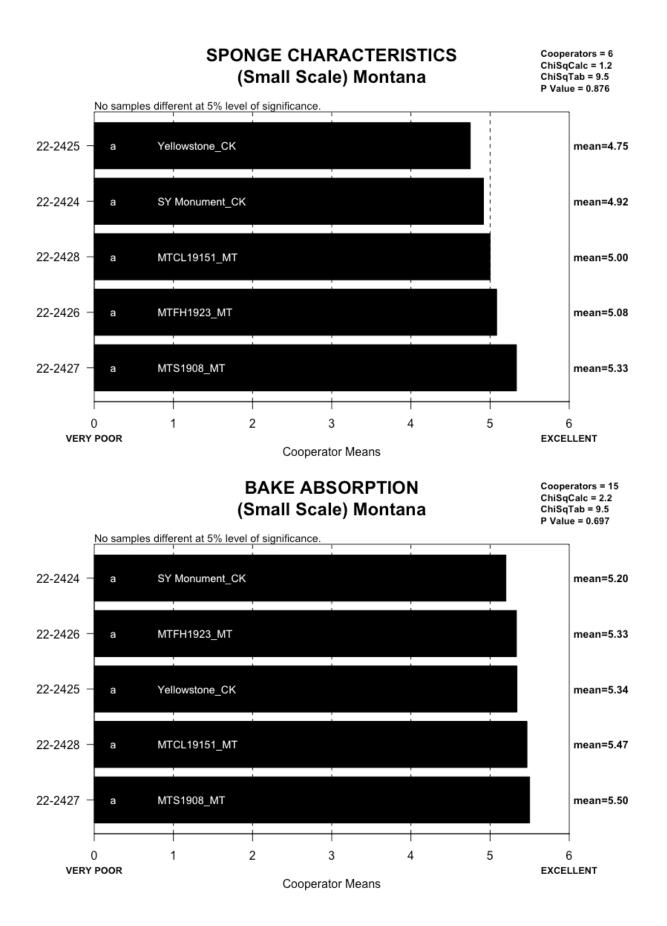
Physical Dough Tests - Extensigraph


2022 (Small Scale) Samples – Montana

Montana: C-Cell Bread Images and Analysis 2022 (Small-Scale) Samples



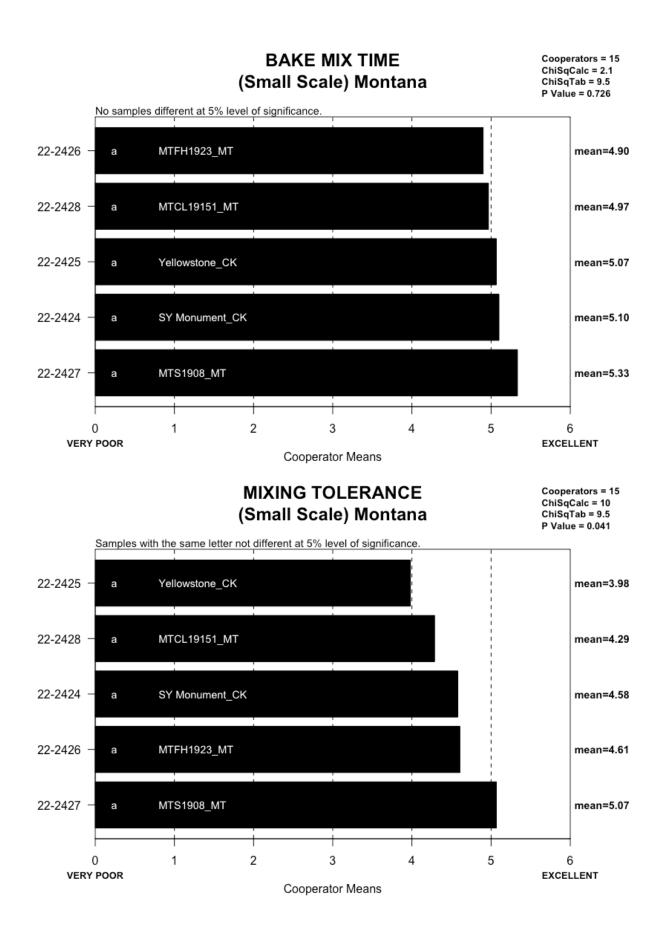
Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2424	5891	116	3667	0.413	1.903	5.568	1.815	-4.65
2425	6333	114	3614	0.430	2.100	1.190	1.785	-6.98

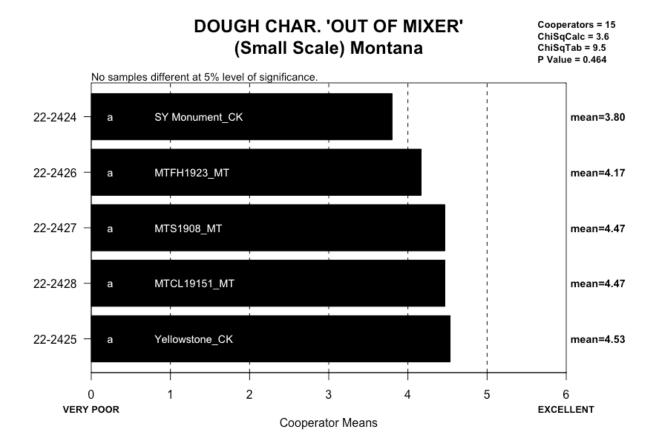


Entry #	Slice Area (mm ²)	Slice Brightness	Number Cells	Wall Thick (mm)	Cell Diameter (mm)	Non- uniformity	Avg. Cell Elongation	Cell Angle to Vertical (⁰)
2426	6507	110	3717	0.430	2.180	10.060	1.825	-3.75
2427	6875	110	3822	0.420	2.150	12.745	1.835	-4.30

Montana: C-Cell Bread Images and Analysis 2022 (Small-Scale) Samples

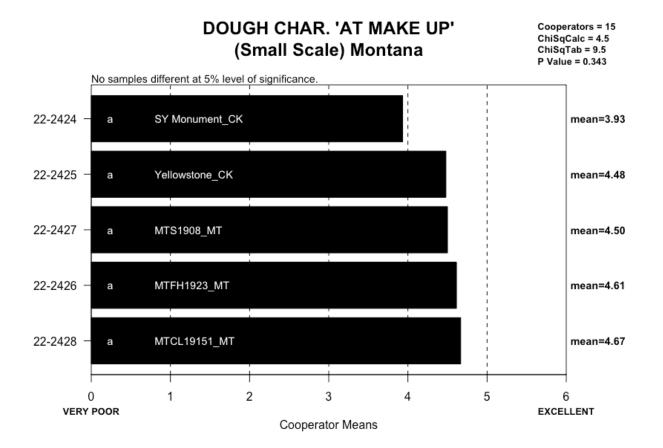
Entry	Slice Area	Slice	Number	Wall Thick	Cell Diameter	Non-	Avg. Cell	Cell Angle to
#	(mm ²)	Brightness	Cells	(mm)	(mm)	uniformity	Elongation	Vertical (⁰)
2428	6824	106	3475	0.445	2.575	8.635	1.805	-11.80

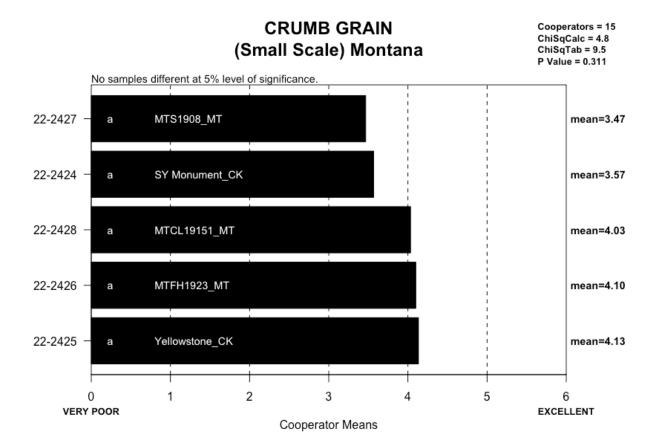



BAKE ABSORPTION, ACTUAL (14% MB) (Small Scale) Montana Cooperators A – O

IDCODE	ID	A	в	С	D	E	F	G	н	1	J	ĸ	L	M	N	0
22-2424	SY Monument_CK	58	66.4	65.6	73.7	68.9	70.7	68.7	62.7	68.4	71.2	68.7	73.0	69.0	68.6	68
22-2425	Yellowstone_CK	59	67.8	64.6	73.1	69.0	70.8	68,3	61.6	69.3	71.3	68.3	71.1	70.3	66.6	68
22-2426	MTFH1923_MT	59	67.2	65.1	74.3	68.4	70.8	69.3	60.4	69.1	72.0	69.3	72.4	70.3	66.8	69
22-2427	MTS1908_MT	59	71,2	65.1	73.3	69.4	71.5	68.5	63.4	70.1	71.0	68.5	71.7	71,7	66.8	68
22-2428	MTCL19151_MT	59	70.4	66.1	70.5	67.9	71.9	70.4	62.8	69.5	73.0	70.4	74.5	70.4	67.8	70

BAKE MIX TIME, ACTUAL (Small Scale) Montana Cooperators A – O

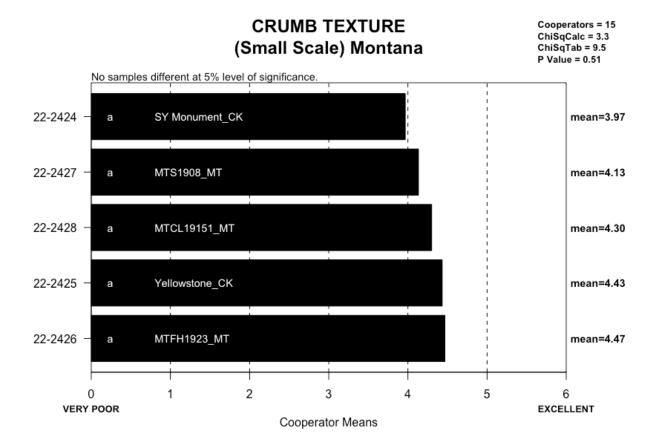

DCODE	ID	Α	в	С	D	Е	F	G	Н	Ĩ	J	к	L	м	N	0
22-2424	SY Monument_CK	15	6.3	11.1	8.1	6.0	7.5	10	8	10.0	25	6	4.5	7.5	18	18
22-2425	Yellowstone_CK	15	6.3	9.7	7.2	5.5	7.5	10	9	9.3	25	6	5.5	6.1	17	20
22-2426	MTFH1923_MT	15	5.5	9.3	7.8	5.5	7.0	9	8	9.0	13	7	5.5	6.5	20	20
22-2427	MTS1908_MT	15	9.4	10.4	9.1	7.0	8,5	12	10	13.0	13	7	5.0	9.5	20	25
22-2428	MTCL19151_MT	15	6.7	8.4	7.0	5.0	7.0	12	7	8.5	25	6	5.0	6.0	12	25


DOUGH CHAR. 'OUT OF MIXER', DESCRIBED (Small Scale) Montana

IDCODE	ID	Sticky	Wet	Tough	Good	Excellent
22-2424	SY Monument_CK	5	2	з	4	τ
22-2425	Yellowstone_CK	3		з	6	2
22-2426	MTFH1923_MT	3	9	2	8	t
22-2427	MTS1908_MT	3	9	2	7	2
22-2428	MTCL19151_MT	3	1	3	7	π

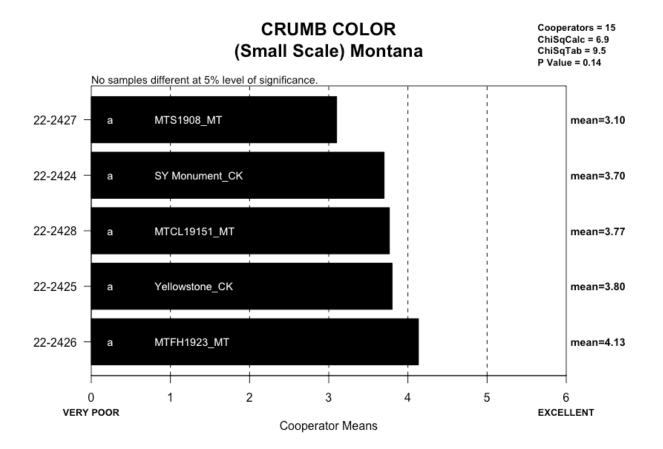
DOUGH CHAR. 'AT MAKE UP', DESCRIBED (Small Scale) Montana

IDCODE	ID	Sticky	Wet	Tough	Good	Excellent
22-2424	SY Monument_CK	3	0	5	6	t
22-2425	Yellowstone_CK	1	0	5	8	t
22-2426	MTFH1923_MT	2	0	3	8	2
22-2427	MTS1908_MT	1	0	5	8	t
22-2428	MTCL19151_MT	O	D	2	11	2



CRUMB GRAIN, DESCRIBED (Small Scale) Montana

IDCODE	ID	Open	Fine	Dense
22-2424	SY Monument_CK	10	3	2
22-2425	Yellowstone_CK	8	5	2
22-2426	MTFH1923_MT	9	5	1
22-2427	MTS1908_MT	9	5	T.
22-2428	MTCL19151_MT	8	7	0

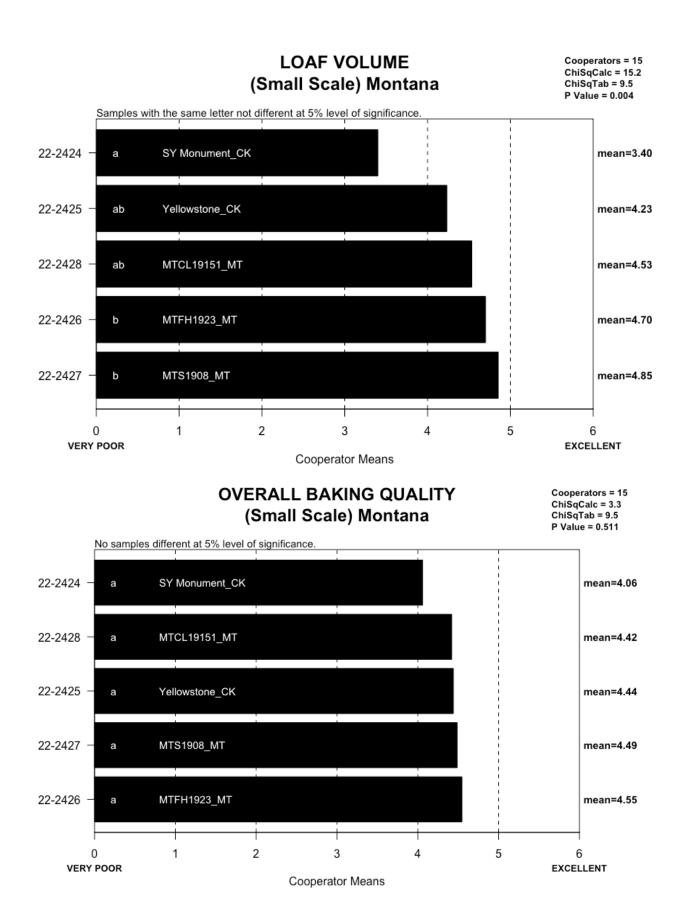

CELL SHAPE, DESCRIBED (Small Scale) Montana

ID	Round	Irregular	Elongated
SY Monument_CK	3	9	3
Yellowstone_CK	5	5	5
MTFH1923_MT	6	6	3
MTS1908_MT	5	8	2
MTCL19151_MT	5	7	3
	SY Monument_CK Yellowstone_CK MTFH1923_MT MTS1908_MT	SY Monument_CK3Yellowstone_CK5MTFH1923_MT6MTS1908_MT5	SY Monument_CK 3 9 Yellowstone_CK 5 5 MTFH1923_MT 6 6 MTS1908_MT 5 8

CRUMB TEXTURE, DESCRIBED (Small Scale) Montana

ID	Harsh	Smooth	Silky
SY Monument_CK	4	7	4
Yellowstone_CK	2	9	-4
MTFH1923_MT	2	8	5
MTS1908_MT	2	10	3
MTCL19151_MT	2	9	-4
	SY Monument_CK Yellowstone_CK MTFH1923_MT MTS1908_MT	SY Monument_CK4Yellowstone_CK2MTFH1923_MT2MTS1908_MT2	SY Monument_CK 4 7 Yellowstone_CK 2 9 MTFH1923_MT 2 8 MTS1908_MT 2 10

CRUMB COLOR, DESCRIBED (Small Scale) Montana


IDCODE	ID	Gray	Dark_Yellow	Yellow	Dull	Creamy	White	Bright_White
22-2424	SY Monument_CK	0	1	3	1	6	4	0
22-2425	Yellowstone_CK	0	0	2	2	8	з	0
22-2426	MTFH1923_MT	0	0	σ	3	6	6	0
22-2427	MTS1908_MT	0	2	4	2	6	1	0
22-2428	MTCL19151_MT	0	1	3	2	.4	5	D

LOAF WEIGHT, ACTUAL (Small Scale) Montana Cooperators A – O

IDC	ODE	ID	Α	в	С	D	Е	F	G	н	10	J	к	L	м	N	0
22-	2424	SY Monument_CK	420	152.7	141.5	139.7	147.3	148.0	454.5	481.6	154.3	447	456	136.5	144.6	422.1	465
22-	2425	Yellowstone_CK	416	150.9	143.5	137.3	145.3	149.0	442.5	485.0	154.9	445	451	137.3	145.3	422.7	464
22-	2426	MTFH1923_MT	416	154.6	142.9	136.7	141.9	149.4	445.0	480.0	155.9	445	456	135.9	144.0	420.3	462
22-	2427	MTS1908_MT	418	153.9	140.3	137.1	142.9	148.1	446.0	477.3	153.9	436	457	130.8	145.2	428.1	462
22-	2428	MTCL19151_MT	420	153.5	141.8	138.1	142.0	146.7	457.5	478.3	153.6	448	455	137.8	146.1	424.4	467

LOAF VOLUME, ACTUAL (Small Scale) Montana Cooperators A – O

IDCODE	ID	А	в	C	D	Е	F	G	н	1	J	к	L	м	N	0
22-2424	SY Monument_CK	2650	910	875	786	915	684	1860	2338	865	2109	2334	690	775	2900	2868
22-2425	Yellowstone_CK	2825	987	968	832	975	711	1907	2288	925	2227	2512	900	800	3000	2897
22-2426	MTFH1923_MT	2825	1009	950	875	1130	780	1791	2475	960	2524	2432	845	775	3000	3059
22-2427	MTS1908_MT	3050	1016	968	891	1115	808	1936	2550	1025	2416	2419	620	770	2925	2927
22-2428	MTCL19151_MT	2925	925	1000	836	1090	810	1747	2375	1000	2242	2480	890	825	2875	3104
	22-2424 22-2425 22-2426 22-2427	22-2424 SY Monument_CK 22-2425 Yellowstone_CK 22-2426 MTFH1923_MT 22-2427 MTS1908_MT	22-2424 SY Monument_CK 2650 22-2425 Yellowstone_CK 2825 22-2426 MTFH1923_MT 2825 22-2427 MTS1908_MT 3050	22-2424 SY Monument_CK 2650 910 22-2425 Yellowstone_CK 2825 987 22-2426 MTFH1923_MT 2825 1009 22-2427 MTS1908_MT 3050 1016	22-2424 SY Monument_CK 2650 910 875 22-2425 Yellowstone_CK 2825 987 968 22-2426 MTFH1923_MT 2825 1009 950 22-2427 MTS1908_MT 3050 1016 968	22-2424 SY Monument_CK 2650 910 875 786 22-2425 Yellowstone_CK 2825 987 968 832 22-2426 MTFH1923_MT 2825 1009 950 875 22-2427 MTS1908_MT 3050 1016 968 891	22-2424 SY Monument_CK 2650 910 875 786 915 22-2425 Yellowstone_CK 2825 987 968 832 975 22-2426 MTFH1923_MT 2825 1009 950 875 1130 22-2427 MTS1908_MT 3050 1016 968 891 1115	22-2424 SY Monument_CK 2650 910 875 786 915 684 22-2425 Yellowstone_CK 2825 987 968 832 975 711 22-2426 MTFH1923_MT 2825 1009 950 875 1130 780 22-2427 MTS1908_MT 3050 1016 968 891 1115 808	22-2424 SY Monument_CK 2650 910 875 786 915 684 1860 22-2425 Yellowstone_CK 2825 987 968 832 975 711 1907 22-2426 MTFH1923_MT 2825 1009 950 875 1130 780 1791 22-2427 MTS1908_MT 3050 1016 968 891 1115 808 1936	22-2424 SY Monument_CK 2650 910 875 786 915 684 1860 2338 22-2425 Yellowstone_CK 2825 987 968 832 975 711 1907 2288 22-2426 MTFH1923_MT 2825 1009 950 875 1130 780 1791 2475 22-2427 MTS1908_MT 3050 1016 968 891 1115 808 1936 2550	22-2424 SY Monument_CK 2650 910 875 786 915 684 1860 2338 865 22-2425 Yellowstone_CK 2825 987 968 832 975 711 1907 2288 925 22-2426 MTFH1923_MT 2825 1009 950 875 1130 780 1791 2475 960 22-2427 MTS1908_MT 3050 1016 968 891 1115 808 1936 2550 1025	22-2424 SY Monument_CK 2650 910 875 786 915 684 1860 2338 865 2109 22-2425 Yellowstone_CK 2825 987 968 832 975 711 1907 2288 925 2227 22-2426 MTFH1923_MT 2825 1009 950 875 1130 780 1791 2475 960 2524 22-2427 MTS1908_MT 3050 1016 968 891 1115 808 1936 2550 1025 2416	22-2424 SY Monument_CK 2650 910 875 786 915 684 1860 2338 865 2109 2334 22-2425 Yellowstone_CK 2825 987 968 832 975 711 1907 2288 925 2227 2512 22-2426 MTFH1923_MT 2825 1009 950 875 1130 780 1791 2475 960 2524 2432 22-2427 MTS1908_MT 3050 1016 968 891 1115 808 1936 2550 1025 2416 2419	22-2424 SY Monument_CK 2650 910 875 786 915 684 1860 2338 865 2109 2334 690 22-2425 Yellowstone_CK 2825 987 968 832 975 711 1907 2288 925 2227 2512 900 22-2426 MTFH1923_MT 2825 1009 950 875 1130 780 1791 2475 960 2524 2432 845 22-2427 MTS1908_MT 3050 1016 968 891 1115 808 1936 2550 1025 2416 2419 620	22-2424 SY Monument_CK 2650 910 875 786 915 684 1860 2338 865 2109 2334 690 775 22-2425 Yellowstone_CK 2825 987 968 832 975 711 1907 2288 925 2227 2512 900 800 22-2426 MTFH1923_MT 2825 1009 950 875 1130 780 1791 2475 960 2524 2432 845 775 22-2427 MTS1908_MT 3050 1016 968 891 1115 808 1936 2550 1025 2416 2419 620 770	22-2424 SY Monument_CK 2650 910 875 786 915 684 1860 2338 865 2109 2334 690 775 2900 22-2425 Yellowstone_CK 2825 987 968 832 975 711 1907 2288 925 2227 2512 900 800 3000 22-2426 MTFH1923_MT 2825 1009 950 875 1130 780 1791 2475 960 2524 2432 845 775 3000 22-2427 MTS1908_MT 3050 1016 968 891 1115 808 1936 2550 1025 2416 2419 620 770 2925

COOPERATOR'S COMMENTS (Small Scale) Montana

COOP.

22-2424 SY Monument_CK

- A. Strong tough dough out of mixer and make up, long mix, open grain, good loaf volume, creamy interior.
- B. No comment.
- C. Mid high water absorption, very long mix time, slight sticky and strong dough, high loaf volume, creamy crumb grain, fine elongate cells, good resilient and smooth texture.
- D. No comment.
- E. Long time to pick up, white dough, cap, dry??
- F. Lower than average protein, long mix time, good crumb springiness.
- G. No comment.
- H. High absorption, average mixing time and tolerance, tough dough character, good grain, low volume.
- I. Long mix time, high absorption, good mixing tolerance, average grain and volume.
- J. No comment.
- K. No comment.
- L. Very small poor texture loaf.
- M. No comment.
- N. Fair protein. High absorption, mix tolerance, and volume.
- O. High absorption, good mix time and stability and dough handling, good volume.

COOP.

22-2425 Yellowstone_CK

- A. Strong tough dough out of mixer and make up, long mix, open grain, good loaf volume, creamy interior.
- B. No comment.
- C. High water absorption, very long mix time, slight sticky and strong dough, high loaf volume, creamy crumb grain, fine elongate cells, good resilient and silky texture.
- D. No comment.
- E. Long time to pick up, excellent loaf externals.
- F. Long mix time, good crumb springiness.
- G. Irregular loaf shape, but other qualities okay.
- H. Average absorption, strong mixing time, nice grain, very low volume.
- I. Long mix time, very high absorption, good mixing tolerance, open grain, good volume.
- J. No comment.
- K. No comment.
- L. Nice crumb with good texture.
- M. No comment.
- N. Good protein and absorption. High mix tolerance and volume.
- O. High absorption, excellent mix time and stability, dough handling, good volume.

COOPERATOR'S COMMENTS (Small Scale) Montana

COOP.

22-2426 MTFH19132_MT

- A. Strong tough dough out of mixer and make up, long mix, open grain, good loaf volume, creamy interior.
- B. No comment.
- C. High water absorption, very long mix time, slight sticky and strong dough, high loaf volume, creamy crumb grain, fine elongate cells, good resilient and silky texture.
- D. No comment.
- E. Long time to pick up, white dough, excellent loaf externals.
- F. Long mix time, nice dough and crumb characteristics.
- G. No comment.
- H. Average absorption, average mix time and tolerance, tough dough at makeup.
- I. Long mix time, very high absorption, good mixing tolerance, good volume.
- J. No comment.
- K. No comment.
- L. No comment.
- M. No comment.
- N. Good protein and absorption. Good mix tolerance and high volume.
- O. High absorption, excellent mix time and stability, dough handling and volume.

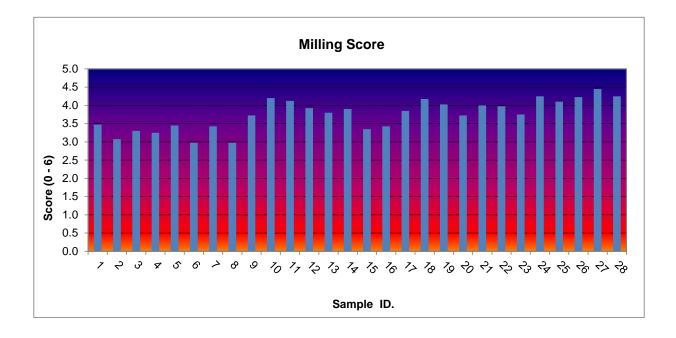
COOP.

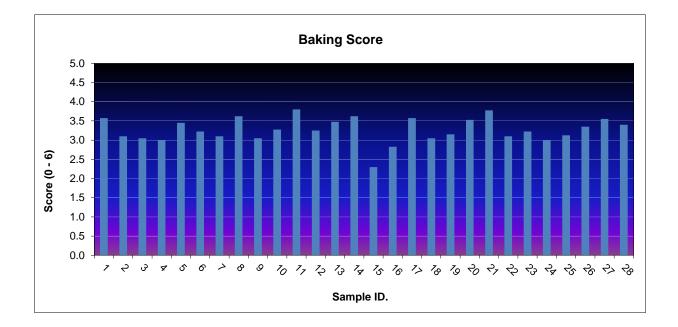
22-2427 MTS1908_MT

- A. Strong tough dough out of mixer and make up, long mix, open grain, good loaf volume, creamy interior.
- B. No comment.
- C. High water absorption, very long mix time, slight sticky and strong dough, high loaf volume, yellow crumb grain, fine elongate cells, good resilient and silky texture.
- D. No comment.
- E. Long time to pick up, rough break and shred.
- F. Average protein, long mix time, good loaf volume, yellow crumb color.
- G. Domed top, holes.
- H. High absorption, strong mix time and tolerance, good grain and volume.
- I. Long mix time, very high absorption, strong mixing tolerance, dark yellow crumb, excellent volume.
- J. No comment.
- K. No comment.
- L. Small, poor texture and grain with addition yellow color.
- M. No comment.
- N. Good protein and absorption. High mix tolerance and volume.
- O. High absorption, excellent mix time and stability, dough handling and volume.

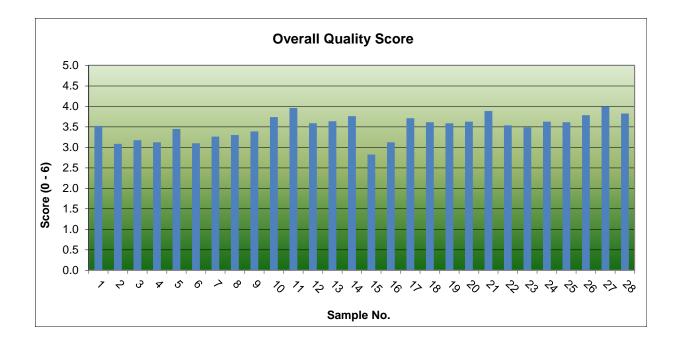
COOPERATOR'S COMMENTS (Small Scale) Montana

COOP.

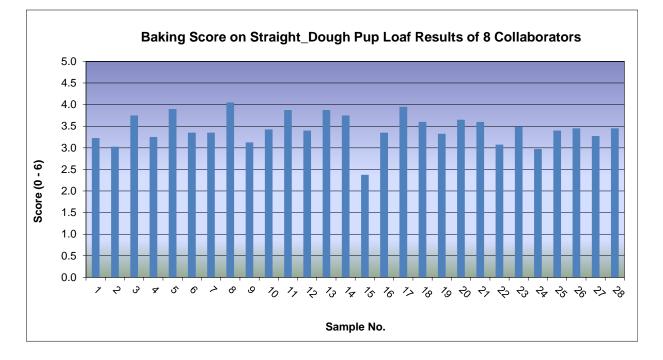

22-2428 MTCL19151_MT


- A. Strong tough dough out of mixer and make up, long mix, open grain, good loaf volume, creamy interior.
- B. No comment.
- C. High water absorption, long mix time, slight sticky and strong dough, very high loaf volume, creamy crumb grain, fine elongate cells, good resilient and silky texture.
- D. No comment.
- E. Excellent loaf externals.
- F. Nice dough and crumb characteristics.
- G. Gummy and irregular, potentially over absorbed, very asymmetrical.
- H. High absorption, average mixing time and tolerance, low volume.
- I. Long mix time, very high absorption, good mixing tolerance, dark yellow crumb, excellent volume.
- J. No comment.
- K. No comment.
- L. Good symmetry with good crumb and grain.
- M. No comment.
- N. Good protein and absorption. Fair mix tolerance. High volume.
- O. High absorption, excellent mix time and stability, dough handling and volume best overall.

Notes: A, G, H, J, N, and O conducted sponge and dough bake tests


2022 WQC Milling and Baking Marketing Scores

2022 WQC Milling & Baking Marketing Scores (Based upon HWWQL Quality Data and KSU Milling Data)



2022 WQC Milling & Baking Marketing Scores (Based upon HWWQL Quality Data and KSU Milling Data)

2022 WQC Baking Marketing Scores

(Based upon Average Baking Data of Collaborators Pup-Loaf Straight Dough)

Marketing Scores

Achieving acceptable end-use (milling and baking) quality is a fundamental objective of wheat breeding programs throughout the U.S. hard winter wheat region. Numerous statistical methods have been developed to measure quality. Several years ago, Dr. Scott Haley (Colorado State University), in conjunction with the USDA-ARS Hard Winter Wheat Quality Laboratory (HWWQL), developed a relational database for summarization and interpretation of regional performance nursery wheat end-use quality data generated annually by the HWWQL (Scott D. Haley, Rod D. May, Bradford W. Seabourn, and Okkyung K. Chung. 1999. Relational database system for summarization and interpretation of Hard Winter Wheat regional quality data. Crop Sci. 39:309–315). Until that time, few tools were available to assist in the decision-making process when faced with a large number of parameters from comprehensive milling and baking tests. The database system uses a graphical interface that requires input from the user. The database system provides simultaneous assessment of multiple quality traits on a standardized scale, *user-specified prioritization* of end-use quality traits for numerical and qualitative ratings of genotypes, tabulation of major quality deficiencies of genotypes, and summarization of quality ratings for a genotype across multiple nurseries.

As an extension of this relational database, and in keeping with the precedent set by Dr. Gary Hareland and the Hard Spring wheat region with the introduction of a 'marketing score' into their 2004 annual crop report to the Wheat Quality Council, the HWWQL developed (using the HRS system as a guide) a similar marketing score for both milling and baking for the Hard Winter Wheat Region, as shown below.

Variation(+/-) from	SCORE	TW lbs/bu	Kernel Size % Large	Weight	Wheat Protein 12%mb	Kernel Hardness NIR	Str Grd Flour Yield %	Wheat Ash 14%mb	Wheat Falling Number Seconds
Target Value:	6	63	39	45	15.0	100	76	1.30	375
	5	62	36	40	14.0	90	74	1.40	350
	4	61	33	35	13.0	80	72	1.50	325
TARGET VALUE:	3	60	30	30	12.0	70	70	1.60	300
	2	59	26	25	11.0	60	68	1.70	275
	1	58	22	20	10.0	50	66	1.80	250
	0	57	18	15	9.0	40	64	1.90	225

Milling Marketing Score = (TW*1.5) + (largeK*1) + (1000KWT*0.5) + + (protein*2.5) + (NIRHS*1) + (YLD*1.5) + (ash*1) + (FN*1)/10 (where TW = test weight, largeK = large kernel size %, 1000KWT = thousand kernel weight, protein = protein content %, NIRHS = NIR hardness score, YLD = flour yield, ash = wheat ash content %, and FN = falling number value).

Variation(+/-) from SCORE		Absorption Actual (%)	Volume Actual (cc)	Rating		Texture Rating Score	SCORE	Mix Time Actual (min)
Target Value:	6	65	1050	6.0	6.0	6.0	0	5.00
	5	64	1000	5.4	5.4	5.4	2	4.50
	4	63	950	4.7	4.7	4.7	4	4.00
TARGET VALUE:	3	62	900	4.0	4.0	4.0	6	3.50
	2	61	850	3.3	3.3	3.3	4	3.00
	1	60	800	1.6	1.6	1.6	2	2.50
	0	59	750	1.0	1.0	1.0	0	2.00

Bake Marketing Score = (Abs*3) + (Lvol*2) + (color*1) + (grain*1.5) + (texture*1) + (MT*1.5)/10 (where Abs = mixograph water absorption %, Lvol = loaf volume [cc], color = crumb color [0-6 scale], grain = crumb grain [0-6 scale], texture = crumb texture [0-6 scale], and MT = mixograph mix time).

Alkaline Noodle Quality Tests of 2022 WQC Hard Winter Wheat Entries

USDA-ARS Hard Winter Wheat Quality Laboratory 1515 College Avenue Manhattan, KS 66502

> Bradford W. Seabourn, <u>brad.seabourn@usda.gov</u> Lucy Lu, <u>Lucy.Lu@usda.gov</u>

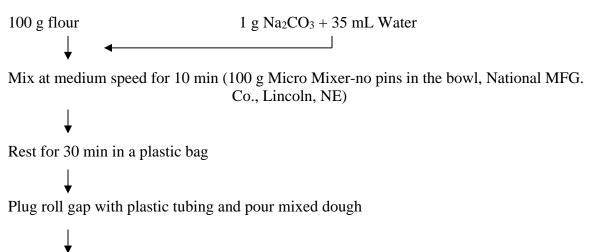
Alkaline Noodle Quality Report

Objectives: Evaluate alkaline noodle color and cooking characteristics.

Materials: 28 WQC hard winter wheat samples harvested in 2022.

Methods:

PPO (Polyphenol Oxidase) Test:


The PPO level in wheat meal was determined using a method modified from AACCI Approved Method 22-85.

- 1. Grind wheat using a Udy Mill and blend the sample thoroughly on tumbling equipment.
- 2. Weigh 75 mg of wheat meal in a 2 mL microfuge tube.
- 3. Dispense 1.5 mL of 5 mM L-DOPA in 50 mM MOPS (pH 6.5) solution.
- 4. Vortex 10 min.
- 5. Centrifuge 4 min at 10,000 rpm.
- 6. Read absorbance at 475 nm.

Noodle Making:

<u>Formulation:</u> Alkaline Noodle was made with 100 g flour, 1 g Na₂CO₃, and 35 mL of water (fixed).

Procedure:

Sheeting: roll gaps 4 (2 x), 3, 2.3, 1.75, 1.35, 1.1 (mm) \rightarrow Measure color at 0 and 24 hr

Cutting

Measurement of Noodle Dough Color:

Noodle dough color (L^* , lightness; a^* , redness-greenness; b^* , yellowness-blueness) was measured by Minolta Colorimeter (Model CR-410) at 0 and 24 hr.

Cooking Noodles:

- 1. After cutting noodles, rest noodles in plastic bags for 2 hr at 21°C.
- 2. Put the noodles (25 g) in the boiling distilled water (300 mL).
- 3. Cook continuously with gentle stirring for 4 min 30 sec or until the core of noodle disappears.
- 4. Pour noodles and hot water through colander and collect the cooking water for calculation of cooking loss.
- 5. Immerse the cooked noodles in a bowl with distilled water (100 mL) for 1 min.
- 6. Drain water by shaking the colander 10 times.
 - Measure the cooked noodle weight for calculation of water uptake.
- 7. Test noodle texture immediately.

Measurement of Cooking Loss and Water Uptake:

Cooking Loss:

- 1. Pre-weigh 500 mL beaker to 0.01 g.
- 2. Quantitatively transfer cooking/rinse water to beaker.
- 3. Evaporate to dryness (constant weight) in air oven at $95 \pm 5^{\circ}$ C. Drying time is about 20 hr.
- 4. Cool beakers and weigh to 0.01 g.
 For 25 g sample, multiply by 4 → % cooking loss.

Water Uptake:

Water Uptake (%) = (Cooked noodle weight-Raw noodle weight)/Raw noodle weight x 100

Texture Profile Analysis (TPA) of Noodle:

Immediately after cooking, noodle TPA was conducted using a TA-XTplus (Texture Technologies, NY) on 3 strings of noodle with 1-mm flat Perspex Knife Blade (A/LKB-F). TPA provides objective sensory results on various parameters as follows:

- **Hardness** (N): maximum peak force during the first compression cycle (first bite) and often substituted by the term "firmness".
- **Springiness (elasticity, ratio):** ratio related to the height that the food recovers during the time that elapses between the end of the first bite and the start of the second bite.
- **Chewiness:** hardness x cohesiveness x springiness.

- **Resilience** (ratio): measurement of how the sample recovers from deformation both in terms of speed and forces derived.
- **Cohesiveness (ratio):** ratio of the positive force area during the second compression to that during the first compression.

Results:

Top 3 samples showing desirable properties were selected in each category.

Table I shows the following:

Noodle Color (*L* value, Higher is better.) *at 0 hr*: 2415 (80.39), 2428(80.37), 2424 (80.24)

Noodle Color (*L* value, Higher is better.) *at 24 hr*: 2415 (69.85), 2428 (69.62), 2424 (68.36)

Delta L (Change of *L* value, Lower absolute value is better.) 2415 (-10.55), 2428 (-10.76), 2424(-11.88)

PPO (Lower is better.): 2428 (0.158), 2423 (0.173), 2415 (0.209)

Table II shows the following:

Hardness: 2408 (2.904), 2406 (2.795), 2407 (2.770)

Springiness: 2419 (0.913), 2428 (0.911), 2406 (0.909)

Chewiness: 2406 (1.706), 2408 (1.636), 2407 (1.606)

Resilience: 2411 (0.437), 2426 (0.433), 2410 (0.431)

Cohesiveness: 2419 (0.693), 2411 (0.691), 2428 (0.686)

Water Uptake: 2418 (91.61), 2421 (91.60), 2419 (89.60)

Cooking Loss: 2419 (6.00), 2418 (6.80), 2411 (7.20)

Discussion

Sample 2428 had second highest L-value (brightness) at both 0 and 24 hrs, second lowest delta L^* value, the highest b-value at 24 hrs and the lowest PPO value. This sample also had second highest springiness and third highest cohesiveness in texture after cooking. Bright noodle color 24 hrs after production and a firmer texture following cooking are considered desirable

characteristics for alkaline noodles. Thus, sample 2428 would be considered the most favourable variety overall for alkaline noodle quality.

Sample 2415 had the highest L-value (brightness) at both 0 and 24 hrs, the lowest delta L^* value and third lowest PPO value. This sample also had lower hardness and chewiness after cooking. Therefore, sample 2415 would be considered the most favorable variety overall for white salted noodles quality (Japanese Udon-type), which are preferred to have a bright, creamy white color, and smooth, soft texture.

Sample 2424 had third highest L-value (brightness) at both 0 and 24 hrs. This sample also had third lowest delta L^* value.

Sample	L* @	L* @	a* @	a* @	b* @	b*@	delta	delta	delta	
ID	0	24	0	24	0	24	L*	a*	b*	PPO
2401	76.00	61.48	-0.38	1.98	21.15	23.52	-14.53	2.36	2.37	0.594
2402	77.47	64.48	-0.34	1.62	19.21	22.89	-12.99	1.96	3.68	0.385
2403	77.73	64.07	-0.58	1.90	19.92	25.11	-13.67	2.48	5.19	0.232
2404	78.23	64.05	-0.53	1.67	19.37	23.48	-14.18	2.19	4.11	0.665
2405	76.70	60.90	-0.46	1.77	19.46	22.10	-15.80	2.23	2.65	0.689
2406	77.72	62.24	-0.74	1.78	20.27	24.55	-15.48	2.52	4.28	0.721
2407	78.38	63.03	-0.65	1.61	17.89	22.43	-15.35	2.26	4.54	0.760
2408	74.71	59.35	-0.23	2.53	21.72	25.27	-15.36	2.76	3.55	0.657
2409	77.47	62.57	-0.36	2.14	19.49	23.14	-14.90	2.49	3.66	0.292
2410	78.16	63.86	-0.54	1.74	19.66	23.53	-14.30	2.28	3.87	0.487
2411	77.44	62.04	-0.51	2.13	20.64	23.78	-15.40	2.64	3.14	0.648
2412	77.71	64.00	-0.35	1.85	20.35	24.04	-13.71	2.20	3.69	0.611
2413	74.11	59.06	0.01	2.94	23.29	24.79	-15.05	2.93	1.50	0.522
2414	75.38	61.52	-0.39	2.47	23.09	25.24	-13.86	2.86	2.15	0.533
2415	80.39	69.85	-1.18	0.75	21.28	24.91	-10.55	1.93	3.64	0.209
2416	78.82	66.60	-0.87	1.19	21.30	24.94	-12.22	2.06	3.64	0.484
2417	75.29	60.84	-0.47	2.25	22.42	24.70	-14.45	2.72	2.28	0.510
2418	76.34	62.27	-0.56	2.05	22.01	24.57	-14.07	2.61	2.56	0.539
2419	77.82	63.84	-0.65	1.60	19.44	21.90	-13.98	2.24	2.46	0.530
2420	75.07	60.33	-0.50	2.17	22.82	24.64	-14.74	2.67	1.82	0.483
2421	76.12	60.72	-0.64	2.32	21.97	24.48	-15.40	2.95	2.52	0.619
2422	77.19	63.76	-0.44	1.95	19.97	22.47	-13.44	2.39	2.50	0.599
2423	76.38	64.06	-0.32	2.17	22.31	26.29	-12.33	2.49	3.99	0.173
2424	80.24	68.36	-1.15	0.73	21.03	24.05	-11.88	1.88	3.02	0.265
2425	77.89	65.34	-0.30	2.27	21.40	25.89	-12.55	2.57	4.49	0.407
2426	78.09	64.07	-0.37	2.31	20.04	24.11	-14.02	2.68	4.07	0.631
2427	75.77	62.84	0.09	2.38	24.63	26.53	-12.94	2.29	1.90	0.215
2428	80.37	69.62	-0.90	1.23	21.22	26.87	-10.76	2.13	5.66	0.158
Avg	77.25	63.40	-0.51	1.91	20.98	24.29	-13.85	2.42	3.32	0.486

Table I. Noodle Color and PPO Level

Sample						Water Uptake	cooking
ID	Hardness	Springiness	Chewiness	Resilience	Cohesiveness	(%)	loss(%)
2401	2.609	0.886	1.563	0.399	0.676	85.20	7.20
2402	2.532	0.855	1.392	0.376	0.642	81.60	8.40
2403	2.567	0.851	1.413	0.375	0.647	86.00	8.40
2404	2.587	0.880	1.537	0.399	0.675	78.80	8.00
2405	2.502	0.878	1.475	0.390	0.672	82.80	7.60
2406	2.795	0.909	1.706	0.393	0.672	84.40	7.60
2407	2.770	0.865	1.606	0.403	0.670	82.80	8.40
2408	2.904	0.873	1.636	0.368	0.645	88.00	8.40
2409	2.589	0.869	1.504	0.410	0.668	81.20	7.60
2410	2.550	0.884	1.546	0.431	0.686	84.40	7.60
2411	2.437	0.892	1.503	0.437	0.691	84.40	7.20
2412	2.386	0.888	1.406	0.401	0.664	88.80	8.00
2413	2.546	0.855	1.459	0.402	0.670	79.20	8.00
2414	2.561	0.871	1.441	0.379	0.646	85.20	8.40
2415	2.414	0.863	1.362	0.399	0.653	88.80	8.40
2416	2.475	0.886	1.477	0.414	0.674	89.20	7.60
2417	2.522	0.876	1.464	0.389	0.663	85.60	8.40
2418	2.657	0.865	1.550	0.409	0.674	91.61	6.80
2419	2.476	0.913	1.567	0.425	0.693	89.60	6.00
2420	2.589	0.896	1.547	0.398	0.667	83.60	7.60
2421	2.522	0.882	1.473	0.413	0.662	91.60	8.00
2422	2.454	0.886	1.453	0.398	0.668	80.80	8.80
2423	2.426	0.861	1.369	0.385	0.655	81.20	8.80
2424	2.416	0.882	1.430	0.414	0.671	77.60	8.80
2425	2.587	0.888	1.539	0.404	0.670	80.80	8.40
2426	2.656	0.882	1.604	0.433	0.685	83.20	7.20
2427	2.449	0.888	1.484	0.415	0.682	81.20	8.00
2428	2.405	0.911	1.502	0.415	0.686	85.20	8.00
Avg	2.549	0.880	1.500	0.403	0.669	84.39	7.91

Table II. Texture Profile Analysis of Cooked Noodle and Water Uptake and Cooking Loss

TORTILLA BAKING TEST RESULTS of 2022 WQC SAMPLES

Cereal Quality Lab, Department Food Science and Technology Texas A&M University, College Station, TX (December 2022)

SUMMARY

This report summarizes the physical attributes of tortillas produced on December 8th and 9th 2022 using 28 test wheat flours. Data on shelf-stability and physical properties of the tortillas was collected over 14 days.

Samples 2405, 2418, and 2421 created "Excellent" tortillas (Table 1) based on subjective rollability on day 14 (\geq 4.0) and final diameter (>160 mm). Subjective rollability is defined as having very little cracking when rolled 14 days after baking and indicates minimal staling and longer shelf-life. High rollability scores paired with large final tortilla diameter indicates a strong flour with good extensibility.

Samples 2401, 2404, 2406, 2410, 2411, 2412, 2413, 2414, 2422, 2423, 2425, and 2427 created "Good" tortillas with great rollability (\geq 4.0 = slight cracks visible) but diameter that just missed the cutoff for Excellent (<160 mm). Sample 2403 also made tortillas with "Good" classification, but with reduced day 14 rollability (3.5) but very high diameter (174 mm). This suggests excellent dough extensibility, but the increased surface area of the resulting tortilla caused the tortillas to dry out, resulting in less desirable shelf-life.

Samples 2402, 2407, 2409, 2419, 2424, 2426, and 2428 made "Fair" tortillas based on diameter (140 – 150 mm). This data suggests that these flours were strong, causing tortilla dough to shrink slightly when hot-pressed.

2415, 2417, and 2420 tortillas were classified as "Poor" and had acceptable diameters (\geq 150mm) but low rollability scores (\leq 3), indicative of weak flours.

RESULTS

Test #	Moisture [%]	Weight [g]	Thickness [mm]	Diameter [mm]	Sp.Vol [mm³/g]	Lightness [L*-value]	Rollability Day 7	Rollability Day 14	Rating* score
2401	33.1	39.7	2.40	158	1.2	71.4	5.0	5.0	Good
2402	34.2	40.0	3.33	148	1.4	70.4	3.5	4.0	Fair
2403	32.6	38.5	2.15	174	1.3	70.9	5.0	3.5	Good
2404	30.8	39.1	2.42	159	1.2	71.3	4.5	5.0	Good
2405	27.1	39.3	2.63	164	1.4	72.4	5.0	4.5	Excellent
2406	34.1	39.9	2.75	154	1.3	69.8	5.0	5.0	Good
2407	33.7	40.3	2.98	144	1.2	73.2	5.0	4.5	Fair
2408	33.4	39.4	2.98	158	1.5	72.0	4.5	3.5	Good
2409	35.1	39.8	2.81	148	1.2	72.3	4.0	4.0	Fair
2410	35.4	39.6	2.90	151	1.3	72.0	5.0	4.0	Good
2411	34.5	38.9	2.54	158	1.3	73.0	5.0	4.5	Good
2412	35.4	39.4	3.03	153	1.4	72.8	5.0	4.5	Good
2413	34.0	39.3	2.88	156	1.4	73.2	4.5	4.5	Good
2414	34.4	39.4	3.00	157	1.5	70.6	4.0	4.0	Good
2415	34.7	39.1	2.83	159	1.4	71.9	4.0	2.5	Poor
2416	34.8	39.0	2.97	157	1.5	71.3	4.5	3.5	Good
2417	34.3	38.7	2.96	163	1.6	71.1	4.5	3.0	Poor
2418	34.9	38.9	2.59	165	1.4	72.3	5.0	4.5	Excellent
2419	34.7	39.7	2.79	147	1.2	71.0	4.5	5.0	Fair
2420	34.7	39.2	2.66	162	1.4	71.7	3.5	3.0	Poor
2421	34.6	39.1	2.87	162	1.5	69.4	4.0	4.0	Excellent
2422	36.6	39.5	2.76	152	1.3	71.8	3.5	4.0	Good
2423	34.5	39.5	2.89	152	1.3	73.4	4.5	4.0	Good
2424	33.1	39.9	3.00	144	1.2	73.4	5.0	4.0	Fair
2425	33.8	39.5	3.02	153	1.4	70.6	5.0	5.0	Good
2426	35.3	40.2	2.88	147	1.2	70.9	5.0	5.0	Fair
2427	35.8	39.6	3.00	154	1.4	72.5	5.0	5.0	Good
2428	35.6	39.8	2.79	147	1.2	75.2	4.5	5.0	Fair

Table 1 – Physical properties of tortillas

*Subjective rating based primarily on diameter and rollability. Excellent ≥4.0 on day 14, >160 mm diameter. Good: rollability score >3.0 on day 14, 150-160 mm diameter. Fair: rollability score >3.0 on day 14, 140-150 mm diameter. Poor: rollability score ≤3.0 on day 14, any diameter.

2022 WQC HARD WINTER WHEAT FLOUR PROTEIN ANALYSIS

Michael Tilley, Ph.D. and Melanie Kessler-Mathieu, Ph.D.

USDA, CGAHR, Manhattan, KS

Procedure for the separation of glutenins for determination of HMW glutenin subunits on Agilent 2100 Lab-on-a -Chip- bioanalyzer

- Weight 100 mg of flour and add 1ml of 0.3 M Sodium Iodide solution containing 7.5 % isopropanol

- Include controls Karl 92 (1, 7+8, 5+10) and Chinese spring (null, 7+8, 2+12)

- Vortex shake for 15 min. and centrifuge for 5 min at 12,000 x g at room temp. Discard the supernatant.

- To the pellet add 1ml of deionized water, vortex shake for 5 min and centrifuge as above.

- Discard the supernatant.

- To the pellet add 1ml of 12.5 mM sodium borate buffer pH 10.0 + 2% SDS + 2% BME.

- Vortex shake for 30 minutes, centrifuge for 5 min. at 12,000 x g at room temp. and collect the supernatant (contains glutenins).

Determination of polymeric to monomeric protein ratio

Protein extraction

- Weight 10 mg flour and add 1 ml 0.05M Sodium phosphate buffer (Na_2HPO_4) , pH 6.9, containing 0.5% SDS (w/v)

- Vortex the samples for 15 min.

- Sonicate the samples in ice for 15s at a power output of 6W. Collect the supernatant (contains total protein).

- Filter the supernatant in a 0.45 μ m filter and analyze samples by size-exclusion HPLC (SE-HPLC).

SE-HPLC

- SE-HPLC was conducted using a 300.0 x 7.8 mm Yarra[™] SEC-4000 column (Phenomenex, Torrance, CA) on an Agilent 1100 HPLC system, kept at 30°C, with a constant gradient composed of 50/50 ratio of HPLC grade

water + 0.1% Trifluoroacetic acid (TFA) and Acetonitrile + 0.1% TFA flow rate of 0.50 ml/min during 30 min.

- The chromatograms were manually integrated. The area of the first peak corresponds to polymeric proteins and the area of the second peak to monomeric proteins. The ratio was determined using the areas of the chromatograms.

Results of Flour Protein Analysis

Hard Winter Wheat WQC 2022 Crop Protein Analysis

	High Molecular Weight Glutenin Subunits			Polymeric/Monomeric protein ratio		
	<u>Glu-A1</u>	Glu-B1	<u>Glu-D1</u>			
22-0002401	1, 2*	17+18	5+10	1.11		
22-0002402 SY	2*	7+9	5+10	1.00		
22-0002403	2*	7+9	5+10	1.01		
22-0002404	2*	7+9	5+10	0.95		
22-0002405	2*	7+9	5+10	1.07		
22-0002406	2*	7+9	5+10	1.02		
22-0002407	2*	7+8	5+10	0.86		
22-0002408	2*	20a+20b	5+10	1.08		
22-0002409	2*	7+9	5+10	0.90		
22-0002410	1, 2*	17+18	5+10	1.09		
22-0002411	2*	7+9	5+10	0.96		
22-0002412	2*	7+9	5+10	1.04		
22-0002413	1,2*	7+9	5+10	0.83		
22-0002414	1,2*	17+18	2+12	1.02		
22-0002415	2*	7+9	5+10	1.02		
22-0002416	2*	7+9 (possible 7 ^{OE}	5+10	0.99		
22-0002417	2*	7+8	5+10	0.96		
22-0002418	2*	7+8	5+10	0.94		
22-0002419	2*	17+18	5+10	1.02		
22-0002420	2*	7+9	5+10	0.98		
22-0002421	2*	7+9	5+10	0.79		
22-0002422	2*	7+9	5+10	0.84		
22-0002423	2*	7+8	5+10	0.71		
22-0002424	2*	7+9	5+10	0.96		
22-0002425	1	7+8	5+10	0.94		
22-0002426	1	7+8	5+10	1.00		
22-0002427	1	7+8	5+10	0.88		
22-0002428	2*	7+9	5+10	0.98		

APPENDIX A

Credits and Methods

CREDITS

Milling, Sample Analysis, Ingredients and Report Preparation

Single Kernel Analysis, Kernel Size Distribution, and Test Weight

Flour Milling (Miag Multomat)

Wheat Grading

Moisture, Ash, Protein, and Minolta Flour Color

Mixograph, Farinograph Tests, Extensigraph, and Alveograph Tests

Rapid Visco-Analyzer, and Sedimentation Tests

Marketing Scores Sedimentation Tests

Flour Protein Analysis

Falling Number Test and Starch Damage

Doh-Tone 2 as Fungi α-amylase

Tortilla Evaluation

Alkaline Noodle Evaluation

Data Compilation and Final Report

Bake Data Processing

USDA/ARS/HWWQL Manhattan, KS

KSU Dept. Grain Science & Ind. Manhattan, KS

GIPSA Kansas City, MO

USDA/ARS/HWWQL Manhattan, KS

USDA/ARS/HWWQL Manhattan, KS

USDA/ARS/HWWQL Manhattan, KS

USDA/ARS/HWWQL Manhattan, KS

USDA/ARS/GQSRU Manhattan, KS

USDA/ARS/HWWQL Manhattan, KS

Corbion 3947 Broadway Kansas City, MO 64111

TAMU, Cereal Quality Lab College Station, TX

USDA/ARS/HWWQL Manhattan, KS

USDA/ARS/HWWQL Manhattan, KS

Scott Haley at CSU Ft. Collins, CO

CREDITS Wheat Breeders

Katherine Frels

University of Nebraska Dept. of Agronomy and Horticulture 279 Plant Science Hall Lincoln, NE 68583-0915 (402) 472-8709 kfrels2@unl.edu

Marla Dale Barnett

Limagrain Cereal Seeds LLC 6414 N Sheridan Wichita, KS 67204 (316) 755-2042 Marla.barnett@Limagrain.com

Brett Carver

Oklahoma State University Dept. of Plant and Soil Sciences 368 Ag Hall Stillwater, OK 74078-6028 (405) 744-9580 Brett.carver@okstate.edu

Esten Mason

Colorado State University Dept. of Soil and Crop Sciences 1170 Campus Delivery Fort Collins, CO 80523-1170 (970) 732-7058 Esten.mason@colostate.edu

Francois Marais/Bradley Bisek

North Dakota State University Loftsgard Hall 266H Fargo, ND 58108 (701) 231-8155 <u>Gideon.Marais@ndsu.edu</u>

Adam Bray

Bayer U.S – Crop Science (Westbred) BB4217-A 700 Chesterfield Pkwy W Chesterfield, MO 63017 (314) 250-5076 Adam.bray@bayer.com

Jackie Rudd and Amir Ibrahim

Texas A&M University Texas AgriLife Research Center 6500 Amarillo Blvd. W. Amarillo, TX 79106 (806) 677-5644 j-rudd@tamu.edu

Sunish Sehgal

South Dakota State University Agronomy, Horticulture & Plant Science Box 2108, Jackrabbit Dr. Brookings, SD 57007 (605) 688-5709 <u>Sunish.Sehgal@sdstate.edu</u>

Allan Fritz

Kansas State University Dept of Agronomy 4012 Throckmorton Manhattan, KS 66506 (785) 532-7245 akf@ksu.edu

Suchismita Mondal

Montana State University Dept of Plant Sci and Pathology 407 Leon Johnson Hall (406)994-5127 Suchismita.mondal@montana.edu

Josh Coltrain/Jon Rich

Syngenta – Agripro 11783 Ascher Rd. Junction, KS 66441 (785) 210-2118 Josh.Coltrain@syngenta.com

Willian Berzonsky

BASF Corporation 925 County Road 378 Beaver Crossing, NE 68313 (402) 523-6855 William.Berzonsky@basf.com

Guorong Zhang

Kansas State University Ft. Hays Branch Exp. Station 1232 240th Ave. Hays, KS 67601 (785) 625-3425 gzhang@k-state.edu

CREDITS Baking Collaborators

Address

Collaborator Type

Contact

ADM Milling Co. 100 Paniplus Roadway Olathe, KS 66061 Miller

Vickie Correll (913)491-7588 Vickie.Correll@adm.com

Austin Murray/Gang Guo

Austin.murray@ardentmills.com

(402) 250-0341

Ardent Mills 1875 Lawrence St. Suite 200 Denver, CO 80202 Miller

Miller

Grain Craft I & Q Lab 1990 Kimball Ave. Manhattan, KS 66502

Colorado State University Wheat Quality Lab Dept. Soil and Crop Sciences Ft. Collins, CO 80523

Kansas State University Dept of Grain Science Shellenberger Hall Manhattan, KS 66506 Wheat Quality Lab

Limagrain Cereal Seeds LLC Wheat Quality Lab 7292 Greenridge Rd., Unit 106 Windsor, CO 80550

North Dakota State Univ. Plant Science Department 1250 Bolley Drive Harris Hall 118 Fargo, ND 58108

Wheat Quality Lab

Kathy Brower

(785) 317-3901 kbrower@graincraft.com

John Stromberger (970)491-2664 John.Stromberger@colostate.edu

Yonghui Li (785)532-6194 Yonghui@ksu.edu

Cathy Butti (970)498-2205 cathy.butti@limagrain.com

DeLane Olsen (701)367-9031 DeLane.Olsen@ndsu.edu

CREDITS Baking Collaborators

Address

Collaborator Type

Contact

Texas A&M University Wheat Quality Lab Soil & Crop Science Dept 2474 TAMU College Station, TX 77843-2472

Joseph Awika (979) 845-2985 awika@tamu.edu

Univ. of Nebraska Dept of Agronomy 180 Plant Science Bldg.	Wheat Quality Lab	Lan Xu (402)472-6243 <u>lxu4@unlnotes.unl.edu</u>
USDA/ARS/HWWQL 1515 College Ave. Manhattan, KS 66502	Wheat Quality Lab	Theresa Sutton (785) 776-2764 <u>Theresa.Sutton@ars.usda.gov</u>
USDA/ARS/WWQL E-202 FSHN	Wheat Quality Lab	Alecia Marie Kiszonas (509) 335-4062

E-202 FSHN Washington State Univ. Pullman, WA 99614

Wheat Marketing Center 1200 NW Naito PRKWY STE 230 Portland, OR 97209

Wheat Quality Lab

USDA/ARS/HRSQL Harris Hall North Dakota State Univ. Fargo, ND 58105

Bay State Milling Co. 100 Congress St. Quincy, MA 02169

Wheat Quality Lab

Miller

Joseph Habib/Emily Ehlers (617)328-4400 x 5119

alecia.kiszonas@wsu.edu

Liman Liu

(503)295-0823 liman@wmcinc.org

Linda Dykes (701)239-1412

jhabib@bsm.com

Linda.Dykes@usda.gov

CREDITS Baking Collaborators

Address

Generla Mills

N. Golden Valley, MN 55427

Collaborator Type

Miller

Contact

Grain and Flour Quality Lab 9000 Plymounth Ave.

Aly Sharpe (763)764-7961 Aly.Wadley2@genmills.com

METHODS

<u>**Test Weight**</u> – AACC Approved Method 55-10. Test weight is the weight per Winchester bushel expressed to the nearest tenth of a pound. This method determines the weight of dockage-free grain.

<u>Weight per Hectoliter</u> - Weight per Winchester Bu x 1.292 + 1.419 (all wheats except Durum) expressed to the nearest tenth of a kilogram. Example: 60.5 lb/bu x 1.292 + 1.419 = 79.6 kg/hl.

<u>1000 Kernel Weight</u> - The weight in grams of 300 kernels of wheat, determined by SKCS, and converted to 1000.

Wheat Kernel Size Test - 200g of wheat are placed on the top sieve of a stack of 3 (8inch diameter) Tyler No. 7, 9 & 12 sieves (2.79, 1.98, & 1.40 mm openings; US Equiv. No. 7, 10 & 12) and sifted for 60 seconds on a Ro-Tap sifter. The percentage remaining on each sieve is reported.

<u>Wheat and Flour Moisture</u> - AACC Approved Method 44-15A. Wheat (ground in Falling Number 3303 burr-type mill to prevent drying before grinding) or flour is dried in a forced air oven at 130° C for one hour.

<u>Wheat and Flour Protein</u> - AACC Approved Method 46-30 wheat meal and flour. Combustion nitrogen method.

<u>Ash</u> - AACC Approved Method 08-01. Sample remaining after ignition is expressed as percent.

Experimental Milling Test - Brabender Quadrumat Sr. is used to mill wheat samples with 15% of tempering moisture for more than 16 hours and feed rate is 150 g/min.

<u>Miag Multomat (Small Scale) Milling</u> - Each coded variety is cleaned with a Carter dockage tester, placed in drums, and sampled for physical wheat tests and analysis. Each variety is then tempered using a double cone blender with enough added water to bring the wheat moisture to 16%. The tempered wheat is held in drums for approximately 20 hours before milling. Milling is performed on the Miag Multomat, which consists of 3 breaks, 5 reductions, and a bran duster. Feed rate is set at 850 to 900 grams per minute. The mill is warmed up and adjusted using KSU mill mix, after which 2-3 bushels of each coded experimental sample are milled.

Break rollers are adjusted to the following releases through a U.S. 20 S.S. sieve:

First Break	50%
Second Break	50%
Third Break	clean-up

Flour yields are calculated from scale weights and expressed as percentage of total products recovered from the mill.

<u>Flour Color</u> – Evaluated using Minolta Chroma Meter. The flour color results are reported in terms of 3-dimensional color values based on L^* , a^* , and b^* .

<u>Wet Gluten</u> - AACC Approved Method (38-12). 10 g. of flour and 5.2 ml. of 2% salt solution are mixed in a Glutomatic test chamber for 20 seconds and then washed for 5 minutes to separate the gluten and the soluble starch products. The gluten ball is divided and placed in a centrifuge for one minute to remove excess water. Percent Wet Gluten is calculated as weight of the centrifuged gluten x 10.

Dry Gluten - Gluten from the wet gluten test is dried between two heated, Teflon coated plates for approximately 4 minutes. Percent Dry Gluten is calculated as weight of the dry gluten x 10.

Falling Number - AACC Approved Method 56-18A. Determination is made by the method of Hagberg (Cereal Chemistry 38:202, 1961) using 7g of flour.

<u>Wheat Hardness</u> - AACC Approved Methods 39-70A (NIR hardness) and 55-31 (using Perten 4100 Single Kernel Characterization System).

Damaged Starch - AACC Approved Method 76-33 using SDmatic. Results are given in an iodine absorption index percentage (AI%) and AACC 76-31 results converted from the testing.

<u>Flour Treatment</u> - Fungal alpha-amylase is added to the flour by each baking cooperator.

<u>Mixograph and Farinograph</u> - AACC Approved Methods (54-40A and 54-21) respectively. These instruments measure and record the resistance to mixing of a flourand-water dough. The recorded curve rises to a "peak" as the gluten is developed and then falls as the gluten is broken down by continued mixing. Curves made by the two instruments are not directly comparable.

The time required for a Mixograph or Farinograph curve to reach the "peak" is an estimate of the amount of mixing required to properly develop the dough for handling and baking. The rate at which a curve falls and narrows after the peak and stability of peak height on either side of the peak are indicators of mixing tolerance. Terms used to describe the Farinograph curve or "farinogram" include:

Absorption - Reported on a 14% moisture basis. Percentage of water required to center the curve on the 500 Farinograph Unit (FU) line at maximum dough consistency (peak). This may not be optimum absorption in a bakery, because baking ingredients influence absorption and flours vary in "slacking-out" during fermentation.

Peak Time - Also called Mixing Time or Dough Development Time. Time (minutes) required for the curve to reach its full development or maximum consistency. High peak values are usually associated with strong wheats that have long mixing requirements.

Stability - Also called Tolerance. This is the time (minutes) that the top of the curve remains above the 500 FU line. Greater stability indicates that the flour can stand more mixing abuse and longer fermentation.

<u>Rapid Visco-Analyzer Test</u> – AACC Approved Methods (61-02).

<u>Sedimentation Test</u> - AACC Approved Methods (56-60).

<u>Alveograph</u> – AACC Approved Methods (54-30A). The instrument measures resistance of dough extension, extensibility, and dough strength. A sheet of dough of definite thickness prepared is expanded by air pressure into a bubble until it is ruptured. The internal pressure in bubble is recorded on automated integrator. P = Tenacity (resistance to extension), L = extensibility, W = baking strength (curve area), P/L = curve configuration ratio, G = swelling index (the square root of the volume of air needed to rupture the bubble), Ie = P200/P, elasticity index (P200: pressure 4 cm from the start of the curve, Ie will be 0 if the extensibility is shorter than 4 cm).

Extensigraph – AACC Approved Method (54-10). The Extensograph® -E stretches the dough prepared by a modified method published in AACC International's Cereal Chemistry (86(5):582-589). The instrument measures resistance of dough extension (R), extensibility (E), maximum resistance (Rmax), and energy (W).

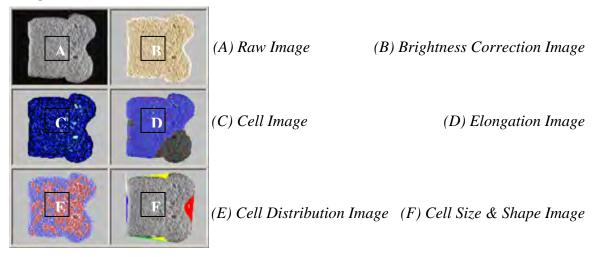
Cumulative Ash and Protein Curves

Ideally, the miller would like to separate wheat bran from endosperm, and reduce endosperm particle size, without producing any bran powder at any stage of the milling process. Unfortunately, current milling technology does not allow this "ideal" situation to occur, and once bran powder is produced it goes into the flour and can never be removed. Ash determination has traditionally been used as an analytical tool in managing the extraction rate of wheat during the milling process. Ash determination consists of burning a known mass of the material to be analyzed and then measuring the residue. Since burning destroys everything but the mineral components, the mass of the residue provides an indication of the contribution that minerals made to the original material. The application of this method to determining bran content of flour has been justified by the fact that endosperm has a lower mineral content than bran. Ash content is lowest in the center of the kernel and increases toward the outer parts because the bran layer contains several times more minerals than pure endosperm.

Many millers have flour refinement specifications (ash content or flour color) that must be met. Therefore, the overall milling value of a wheat sample is determined not only by flour yield, but also flour refinement. A commonly used index of wheat milling value is the cumulative ash curve (Lillard and Hertsgaard 1983). Cumulative ash curves are determined by arranging millstreams in ascending order of ash content, and tabulating the ash content of the total flour produced with the addition of successive millstreams. Wheat that gives low ash content at low extraction, and a slow rate of ash content increase with increasing extraction rate, has a high milling value because of the potential to produce a high percentage of patent flour, which usually sells for a premium in many markets. It should be noted that several authors have indicated that ash curves can be influenced by hardness, variety, whole grain ash, and milling system (Seibel 1974; Posner and Deyoe 1986; Li and Posner 1987, 1989). Natural endosperm ash is typically regarded to be 0.30%; anything above that is generally considered to be due to the milling process.

Similarly, cumulative protein curves are determined by arranging millstreams in ascending order of protein content, and tabulating the protein content of the total flour produced with the addition of successive millstreams. Wheat that gives high protein content at low extraction, and a fast rate of protein content increase with increasing extraction rate, has a high milling value because high protein flour typically sells for a premium in many markets.

LI, Y. Z., and POSNER, E. S. 1987. The influence of kernel size on wheatmillability. Bull. Assoc. Operative Millers November: 5089-5098.


LI, Y. Z., and POSNER, E. S. 1989. An experimental milling techniquefor various flour extraction levels. Cereal Chem. 66:324-328.

LILLARD, D.W. and HERTSGAARD, D.M. 1983. Computer analysis and plotting of milling data: HRS wheat cumulative ash curves. Cereal Chem. 60:42-46.

C-Cell Image Analysis

Pup loaves were baked in duplicate and evaluated with the C-Cell system and its image analysis software (Campden & Chorleywood Food Research Association (CCFRA) and Calibre Control International[®]) at the USDA-ARS Hard Winter Wheat Quality Laboratory (HWWQL) in Manhattan, KS. Two slices from each loaf were scanned: with the break facing the observer, slice 4 and 5 from the right end of the loaf were selected and evaluated with the break side of the slice oriented on the left. Images of the internal grain and crumb structure of each slice represent only the fourth slice of replicate 1, and are shown in the report. Selected numerical data from the image analysis of slice 4 represent the average of slice 4 from replicates 1 and 2, and are shown in the report. General capabilities of the instrument and image analysis are shown below:

Images:

Data:

Forty-eight (48) individual measurements are presented in the data display screens and are saved to the database.

<u>Cell Size</u>: Numbers and dimensions of cells and holes are measured. Wall thickness & coarse/fine clustering.

<u>Cell Elongation and Orientation</u>: Cell alignment and elongation, circulation and curvature <u>Dimensions</u>: Sample area, height, breadth, ratios and wrapper length.

Brightness: Sample brightness and cell contrast.

<u>Shape</u>: Various physical features including, break, concavity and roundness.

<u>Slice Area:</u> The total area of a product slice (mm²).

<u>Slice Brightness</u>: The mean grey level (0-255) of pixels within the slice. The value is lower for products with a darker crumb and for products with larger or deeper cells that contribute to greater shadows. The measurement provides a useful indication of product reflectance.

<u>Number of Cells</u>: The number of discrete cells detected within the slice. Higher values may be due to a finer structure or a larger total slice area. The cells are shown in the Cell image. When interpreting this image, cells only touching diagonally are considered to be discrete.

<u>*Wall Thickness:*</u> The average thickness of cell walls (mm). for bright slices, saturation of some regions may be interpreted as thick walls. Walls close to the edge of the slice are given a reduced weighting in the calculation.

<u>Cell Diameter</u>: The average diameter of cells (mm), based on measurements of the average cell area. This is a good general purpose indicator of the coarseness of the texture, but does not take the depth of cells into account.

<u>Non-Uniformity</u>: A measure of the lack of uniformity between fine and coarse texture (including holes) across the slice. High values indicate less uniformity of texture. The value is useful for comparing slices of similar types of product, but comparisons between products of differing type tend to be less easily interpreted.

<u>Average Cell Elongation</u>: The average length to breadth ratio of cells, independent of their relative orientation. Lower weighting is given to cells close to the edge of the slice. Values close to 1 indicate rounded cells. Higher values indicate greater elongation.

<u>Cell Angle to Vertical (0)</u>: The angle (degrees) of the direction of Net Cell Elongation, measured clockwise from the slice vertical. Lower weighting is given to cells close to the edge of the slice. Values are given in the range of -90 to +90 degrees. Values close to 0 represent a vertical orientation. Values close to + or - 90 represent a horizontal orientation.

Collaborators' Baking Test Profiles and Other Information

Oven Baking No. **Test Methods** Est. Flour and Dough Wt (g) **Mixing Tolerance** Fermentation time (min) Temp Time Coop (F) (min) Sponge and dough Other 240 min (sponge time) and 45 min (fermentation) А 1 600 g flour, 480 g dough 420 20 В 2 Pup-loaf straight dough 100 g flour, approx 175 g dough Mixograph 90 min 425 21 С 3 Pup-loaf straight dough 100 g flour, approx. 175 g dough Farinograph and Mixograph 180 fermentation and 60 min proof time 400 25 200g, 170 g dough 419 D 4 Pup-loaf straight dough Mixograph 180 min 24 Е 5 Pup-loaf straight dough 100 g, approx 170 g 25 Mixograph 90 min 400 F 100 g flour 6 Pup-loaf straight dough Farinograph 120 min 390 25 G Sponge and dough 700 g flour, 500 g dough Farinograph 180 min (sponge) and 70 min (fermentation) 420 20 7 8 Sponge and dough 700 g flour, 524 g dough Farinograph with mixing evalu 240 min (sponge time) and 60 min (fermentation) Н 420 20 9 Pup-loaf straight dough 100 g flour, approx 170 g dough Mixograph 120 min 420 18 Т J 10 Sponge and dough 700 g flour, 500 g dough Farinograph 240 Sponge time 425 25 700 g flour, 525 g dough 400 Κ 11 Straight dough Mixing series 120 min 25 Pup-loaf straight dough 100 g flour, approx 160 g dough L 12 Farinograph 120 min 425 20 Pup-loaf straight dough 420 Μ 13 100 g Miograph 90 min 24 Ν Sponge and dough 600 g flour, 160 g dough Mixing series 240 min 425 16 14 0 15 Sponge and dough 675 g flour, 540 g dough Mixing series 210 min 430 23

2022 WQC COLLABORATORS' BAKING TEST PROFILES AND OTHER INFORMATION

APPENDIX B

HWWQC Technical Board and Goals for HWW Breeders

Hard Winter Wheat Quality Council

2022 Technical Board Officers

CHAIR:	Chris Kirby, Oklahoma Wheat Commission
VICE CHAIR:	Dale Nellor, NAMA
SECRETARY:	Mark Hodges, Plain Grain
MEMBER:	Shawn Thiele, Kansas State University
MEMBER:	Gang Guo, Ardent Mills

2022 Quality Evaluation & Advisory Committee

Brad Seabourn, USDA/ARS/HWWQL

Reuben McLean, Grain Craft

Jon Rich, Syngenta/AgriPro

Shawn Simpson, BIMBO Bakeries USA

Richard Chen, USDA/ARS/HWWQL

Hard Winter Wheat Quality Council (HWWQC)

Charter Revised and Approved (February 20, 2003)

Mission, Policy, and Operating Procedure

The mission of the HWWQC is to provide a forum for leadership and communication in promoting continuous quality improvement among the various elements of the community of hard winter wheat interests. The HWWQC will provide an organization structure to evaluate the quality of hard winter wheat experimental lines and cultivars that may be grown in the traditional growing regions of the United States. The HWWQC also will establish other activities as requested by the membership. The HWWQC operates under the direction and supervision of the Wheat Quality Council (WQC).

Objectives

- Encourage wide participation by all members of the hard winter wheat industry.
- Determine, through professional consulting expertise, the parameters and ranges that adequately describe the performance characteristics that members seek in new and existing cultivars.
- Promote the enhancement of hard winter wheat quality in new cultivars.
- Emphasize the importance of communication across all sectors and provide resources for education on the continuous quality improvement and utilization of hard winter wheat.
- Encourage the organizations vital to hard winter wheat quality enhancement to continue to make positive contributions through research and communications.
- Offer advice and support for the U.S.D.A. A.R.S. Hard Winter Wheat Quality Laboratory in Manhattan, KS.

Membership

• The membership of the HWWQC will consist of members of the WQC.

HWWQC Technical Board

- The Technical Board shall be the administrative unit responsible for managing the functions of the HWWQC.
- The Technical Board shall consist of five members, elected from the membership, to serve three-year terms.
- Officers of the technical board shall consist of a chair, vice-chair, and secretary.
- Each officer serves three years in his or her office.
- Terms start the day after the annual meeting of the HWWQC.
- The vice-chair generally replaces the chair at the conclusion of the chair's term and the secretary generally replaces the vice-chair at the conclusion of the vice-chair's term.
- Officers (normally only the secretary) shall be elected annually at the annual meeting of the HWWQC by nomination and majority vote.
- Any eligible member may be reelected after being out of office for one year.
- Vacancies that occur during the term of office of the members of the technical board shall be filled by nomination and majority vote of the remaining members of the technical board and the WQC Executive Vice President. The appointee will serve the remaining term of the vacancy (up to three years).
- Exceptions to the above may be granted if voted on by the Technical Board or by majority vote of the HWWQC at the annual meeting.

Duties of the Technical Board

- The chair shall be responsible to establish a meeting place and preside at all meetings of the technical board and Wheat Quality Council (selected elements of the General Meeting).
- The vice-chair shall preside at meetings in absence of the chair and assume such duties as may be assigned by the chair of the technical board.
- The secretary shall be responsible for taking minutes of the technical board meetings.
- The Technical Board will direct the Executive Vice President of the WQC on disbursement of allocated funds.
- The chair shall be responsible for communicating budget needs to the Executive Vice President.
- The Technical Board is responsible for presenting budget updates to the general membership at the annual meeting.

Compensation

• Technical Board members shall serve without compensation.

Expenses

• The WQC Executive Vice President for some technical board functions may authorize certain paid expenses.

Hard Winter Wheat Quality Evaluation and Advisory Committee

Committee Purpose

A technical committee entitled "Hard Winter Wheat Quality Evaluation and Advisory Committee" shall be established and consist of the five technical board members and key WQC members working on hard winter wheat. Those members should include, but are not limited to:

- The director of the USDA Hard Winter Wheat Quality Laboratory, Manhattan, KS.
- At least one hard winter wheat breeder from the Great Plains area.
- At least one cooperator from hard winter wheat milling or baking laboratories.
- The senior scientist/editor responsible for the hard winter wheat quality annual report.

Evaluation and Responsibilities

- Establish procedures and requirements for the annual grow out (if applicable), handling, evaluation and reporting of the experimental test line quality evaluation program.
- Annual approval of the samples submitted by hard winter wheat breeders.
- The collection milling and reporting of the experimental and check samples.
- Distribution of samples to cooperators (member companies willing to conduct testing and baking evaluations on the samples prepared)
- Preparation of an annual quality report.

Sample/Locations

• Each breeder entity shall have the privilege of submitting two experimental test lines and one check cultivar each year for evaluation. If slots are available by some breeders not submitting the full allotment, other breeders may submit more than two up to a maximum of 30 samples annually.

Annual Meeting

- The annual meeting of the HWWQC shall coincide with the annual meeting of the WQC. If for some reason the WQC annual meeting is not held, it shall be the duty of the technical board chair to establish an annual meeting time and place.
- The purpose of the meeting shall be to discuss the results of the cooperators quality testing program, elect board members and carry on other business as required by the HWWQC.
- The Technical Board may establish other meetings determined to be necessary.

Finances and Budget

- The executive board of the WQC shall designate the finances required to meet the operating expenses of the HWWQC.
- The budget shall be presented for membership approval at the annual meeting.

Amendments

- Amendments to the policy and operation procedure of the HWWQC can be made by majority vote of the HWWQC members.
- The proposed changes must be submitted in writing and must be in the hands of the membership two weeks prior to voting on the change.

Outlined Goals for Hard Winter Wheat Breeders

Developed by the

Grain Trade, Operative Millers, and Mill Chemists Subcommittees of the

Wheat Quality Council Hard Winter Wheat Technical Committee

- 1. Adaptability. Varieties should be adaptable and retain their quality integrity over a large geographic area.
- 2. Varieties should be resistant to diseases, to insect infestation (including stored grain insects), and to sprouting.
- 3. Emphasize quality evaluation in earlier generations. Obtain milling and baking data before F7. Grain and Texture should be considered along with loaf volume, absorption, mixing, and dough properties when evaluating baking quality.
- 4. Kernel Characteristics:
 - A. Visual Appearance typical of class.
 - B. Hardness significantly greater than soft wheat, but not so hard that milling or flour properties are negatively influenced.
 - C. Uniformly large, plump, vitreous.

		Minimum
	Objective	Acceptable
Bushel Weight (lb.)	60+	58
Thousand Kernel Wt. (g)	30+	24
Over 7 Wire (%)	60+	50

5. Milling Performance. Should mill easily to produce a high extraction (yield) of quality flour. Reduction, sifting, and stock-handling consistent with class history.

Performance on KSU Pilot Mill

	Objective	Acceptable
Straight Grade Extraction		
% at .48% ash	76	74 (minimum)
StrGr. Agtron Color	50	40 (minimum)
StrGr. Flour Ash (%)	0.46	0.50 (maximum)

6. Gluten Strength-Mixing Time. About 60% strong and 40% mellow should be acceptable in the seeded acreage. A reasonably broad range of gluten strength

is needed to meet current demands of various flour users. One variety or gluten type is undesirable.

7. Improved Mixing Tolerance with 'extensible gluten', <u>not</u> bucky or tough.

APPENDIX C

Hard Red Winter Wheat Quality Targets

HWW Quality Targets Committee Approved February, 2006

* "The purpose of Recommended Quality Targets (RQT) for Hard Red Winter Wheat (HRW) is to provide specific quality 'goals' for the breeding community, wheat producers, and marketing programs in order to assist and guide the decisions needed to maintain the consistency and end-use quality of the U.S. HRW market class. The RQT will be dynamic over time in direct response to the primary needs of the marketplace (domestic and foreign), and the needs of the U.S. industry to breed, produce and market wheats to meet market needs. The RQT should NOT be used as essential criteria for variety release decisions in breeding programs, or as marketing/grading standards for private companies or federal/state agencies. This **Statement of Purpose** <u>must</u> accompany all published forms of the RQT."

Quality Parameter (End-Use: Pan Bread)	Recommended Target Value		
Wheat			
Test Weight (lb/bu)	> 60		
SKCS-Hardness Index (SK-HI)	60 - 80		
SK-HI Standard Deviation	< 17.0		
SKCS-Weight (SK-WT, mg)	> 30.0		
SK-WT Standard Deviation	< 8.0		
SKCS-Diameter (SK-SZ, mm)	> 2.40		
SK-SZ Standard Deviation	< 0.40		
Protein Content (%, 12% mb)	> 12.0		
Ash Content (%, 12% mb)	< 1.60		
Falling Number (sec)	> 300		
Straight Grade Flour Yield (%)	> 68		
Flour			
Flour Color L-Value (Minolta Colorimeter)	> 90		
Gluten Index	> 95		
Sedimentation Volume (cc)	> 40		
Farinograph:			
Water Absorption (%, 14% mb)	62+		
Peak Time (min)	4.00 - 8.00		
Stability (min)	10.00-16.00		
Mixograph:			
Water Absorption (%, 14% mb)	62+		
Peak Time (min)	3.00 - 6.00		
Mixing Tolerance (HWWQL Score, 0-6)	3.0		
Straight Dough Pup Method:			
Water Absorption (%, 14% mb)	62+		
Mix Time (min)	3.00 - 5.00		
Loaf Volume (cc)	> 850		
Crumb Score (HWWQL Score, 0-6)	> 3.0		

CONTACT: USDA/ARS CGAHR Hard Winter Wheat Quality Laboratory 1515 College Avenue, Manhattan, KS 66502-2796 VOICE: (785) 776-2751 FAX: (785) 537- 5534 EMAIL: <u>brad.seabourn@usda.gov</u>

APPENDIX D

Hard White Wheat Quality Targets Adopted from PNW for Great Plains

Hard White Wheat Quality Targets Dual Purpose -- Chinese Noodles and Western Pan Bread

Updated on March 1, 2002 at Hard White Wheat Quality Targets Meeting Wheat Marketing Center, Portland, Oregon

	Chinese Hard-Bite	
	Noodles (1)	Pan Bread
Wheat Quality Parameter		
Test Weight (lb/bu)	60 Minimum	60 Minimum
Kernel Hardness (SKCS 4100)	65 - 90	65 Minimum
Kernel Diameter (mm) (SKCS 4100)	2.5 Minimum	2.5 Minimum
Falling Number (seconds)	300 Minimum	300 Minimum
Protein (%, 12% mb)	11-15.0	11.5-14.0
Ash (%, 14% mb)	1.4 Maximum	1.6 Maximum
PPO Level by L-DOPA (WWQL Method)	0	N/A
Flour Quality Parameter		
Protein (%, 14% mb)	10-13.5	10.2-13
Ash (14% mb)	0.38-0.45	N/A
Patent Flour Yield at 0.4% Ash (%)	60 (by Buhler)	N/A
Straight-Grade Flour Yield at 0.45% Ash (%)	70 (by Buhler)	N/A
L* (Minolta Colorimeter CR 310)	91 Minimum	N/A
Wet Gluten (%, 14% mb)	30 Minimum (2)	28
Farinograph Absorption (%, 14% mb)	60 Minimum (2)	60
Farinograph Stability (minutes)	12 Minimum (2)	12
Amylograph Peak Viscosity (Bu) (3)	500-850	500 minimum
Mixograph Peak Time (minutes)	N/A	3-7 @ 5.5 mm peak ht.
Mixograph Absorption (%)	N/A	60
Chinese Raw Noodle Quality Parameter (Ref	er to WMC Protocol) (4	4)
Chinese Raw Noodle Dough Sheet L*24 h	72 Minimum	N/A
Chinese Raw Noodle Dough Sheet L*0-L*24	10 Maximum	N/A
Chinese Raw Noodle Dough Sheet b* 24 h	25 Maximum	N/A
Cooked Noodle Hardness (g)	1250 Minimum (2)	N/A
Pan Bread Quality Parameter		
Pup Loaf Volume (cc)	N/A	900 @11% flour protein

Notes:

(1) Chinese raw, Chinese wet, Chinese instant fried, Philippine instant fried, Malaysia hokkien and Thai bamee noodles.

(2) Straight-grade flour of 12% protein wheat.

(3) Method: 65 g untreated flour + 450 ml deionized water.

(4) Noodle formula: straight-grade flour, 100%; water, 28%; and sodium chloride, 1.2%. Noodle sizes: 2.5 mm (width) x 1.2 mm (thickness).

Noodle textural measurement: cook 100 g noodles in 1000 ml deionized water for 5 min, rinse in 27^oC water and drain. Measure noodle texture on five noodle strands by compressing to 70% of noodle thickness with a 5-mm flat probe attached to TA.XT2 Texture Analyzer.

These end-use quality targets emphasize the broadest possible utilization of hard white wheats.

Wheat Marketin	g Center,	Portland,	Oregon
----------------	-----------	-----------	--------

	Korean Instant	Chinese Northern-Type	Hamburger/Hotdog
	Noodles	Steamed Bread	Buns
Wheat Quality Parameter			
Test Weight (lb/bu)	60 Minimum	60 Minimum	60 Minimum
Kernel Hardness (SKCS 4100)	65 Minimum	65 Minimum	65 Minimum
Kernel Diameter (mm) (SKCS 4100)	2.5 Minimum	2.5 Minimum	2.5 Minimum
Falling Number (seconds)	300 Minimum	350-400	300 Minimum
Protein (%, 12% mb)	10-11.0	10-11.5	13-15.0
Ash (%, 14% mb)	1.4 Maximum	1.4 Maximum	1.6 Maximum
PPO Level by L-DOPA (WWQL Method)	0-0.2	0-0.2	N/A
Flour Quality Parameter			
Protein (%, 14% mb)	8.5-9.5	8.5-10.0	12.2-13.0
Ash (14% mb)	0.38-0.40	0.38-0.45	N/A
Patent Flour Yield at 0.4% Ash (%)	60 (by Buhler)	60 (by Buhler)	N/A
Straight-Grade Flour Yield at 0.45% Ash (%)	70 (by Buhler)	70 (by Buhler)	N/A
L* (Minolta Colorimeter CR 310)	91 Minimum	91 Minimum	N/A
Wet Gluten (%, 14% mb)	N/A	28-30	34.5
Farinograph Absorption (%, 14% mb)	58-60	60-62	64
Farinograph Stability (minutes)	7.5-8.5	4-6.0	15-18.0
Amylograph Peak Viscosity (Bu) (1)	800 Minimum	500 Minimum	500 Minimum
Amylograph Breakdown (Bu)	200 Minimum	N/A	N/A
Mixograph Peak Time (minutes)	N/A	N/A	4-7 @ 5.8 mm peak ht.
Mixograph Absorption (%)	N/A	N/A	64
Pan Bread Quality Parameter			
Pup Loaf Volume (cc)	N/A	N/A	980 @ 13% flour protein

Notes:

(1) Method: 65 g untreated flour + 450 ml deionized water.

APPENDIX E

WQC Business Meeting Minutes Feb. 23, 2022 Minutes for 2022 Hard Winter Wheat Quality Council

February 23, 2022 – Embassy Suites Hotel KCI Airport, Kansas City MO

Welcome & Opening Comments - Dave Green and Rich Kendrick, Chair

Review of 2021 Minutes – Dale Nellor, Secretary Following the review, the minutes were approved and accepted by the council.

Nomination and election of new members – Rich Kendrick, Chair Dale Nellor nominated Shawn Thiele of Kansas State University as a new member of the HWW Board. The nomination was approved by the council.

Announcing Board for 2022 -

Chairman	Chris Kirby	Oklahoma Wheat Commission
Vice Chairman	Dale Nellor	North American Millers' Association
(NAMA)		
Secretary	Mark Hodges	Plains Grains
Member	Shawn Thiele	Kansas State University
Member	Gang Guo	Ardent Mills

Overview of Wheat Tours - Dave Green, WQC

The HWW tour this year will be the week of May 16-19 starting in Manhattan, KS with overnight stays in Colby, KS and Wichita, KS. There is hope participation can return to the 80-85 range.

Overview of Milling of Wheat Samples - Paul Blodgett, KSU Manhattan 21 samples were processed in Manhattan using the MIAG mill over a course of three weeks. Everything went well.

Wheat Quality Council HRW Report for 2021 – Richard Chen, USDA/ARS Manhattan

Due to the absence of Richard Chen, no update was provided.

Review of 2021 Wheat Crop – Mark Hodges, Plains Grains Inc.

The 2021 crop was short and in the bottom half of production and acres. Overall end-use quality and performance (mill/dough/bake) was good. 522 samples were collected from grain elevators from 40 reporting areas in 12 states after at least 30% of the local harvest was complete. Protein and thousand kernel weights were lower than what is normally seen in the PNW and Great Plains. The falling numbers were not a problem this year.

New Grow out Program for Hard Winter Wheat – Marla Barnett, Limagrain Two regions were established with I-80 being the general dividing line between the north and south regions. A total of 21 composite entries were grown in 2021 with 10 composite entries including two checks from five breeding programs and three locations (ND, SD, and NE) in the northern grow out. In the southern grow out 11 composite entries were grown including two checks from six breeding programs and five locations (KS, CO, OK, TX, and Limagrain). An overview was provided of the grow out plans for the 2022 crop year.

Soft Wheat Update – Byung-Kee Baik, USDA/ARS Wooster

In soft wheat, there were 23 entries and 4 groups. An overview of the collaborators and organizations involved in the 2021 crop was provided. An invitation was extended to attend the Soft Wheat Quality Council meeting on March 16. A review of the SWQC entries will occur during that meeting.

State Crop Reports were provided by the following on the current 2022 crop conditions: Texas – Jackie Rudd, Texas A&M
Oklahoma – Mike Schulte, Oklahoma Wheat Commission
Kansas – Aaron Harries, Kansas State University
Nebraska – Royce Schaneman, Nebraska Wheat Board
Colorado – Brad Erker, Colorado Wheat
South Dakota – Reid Christopherson, South Dakota Wheat Commission
Montana – Cassidy Marn, Montana Wheat and Barley Committee

Financial Report – Dave Green, WQC

We are doing fine. The loss of meetings and tours the past couple years have reduced our income, but membership has been static and we have been able to operate the programs as necessary.

Exhibitor's Session (10 minutes) -

Introductions were given by the exhibitors supporting the meeting this year: Calibre C-Cell, Buchi, Midland Scientific, Perkin Elmer, CW Brabender, and Neogen.

Adjourn

APPENDIX F

Historical WQC Hard Winter Wheat Entries from 2001 to 2022

A History of WQC Hard Winter Wheat Entries

2022						
Entry ID	Entry No.	Entry Class	Released	Release Name	Release Year	Program
Jagalene_CK	22-2401	.,				Check
SY Monument_CK	22-2402					Check
19Nord-124_ND	22-2403					NSDU
SD15007-11_SD	22-2404					SDSU
SD18B025-8_SD	22-2405					SDSU
NE17443 NE	22-2406					Nebraska
NE17441_NE	22-2407					Nebraska
WB4727 WB	22-2408					Westbred
SY Monument_CK	22-2409					Check
Jagalene_CK	22-2410					Check
LCH18-9027 LG	22-2411					Limagrain
TX16M9216_TX	22-2412					TAMU
BASF7_BF	22-2413					BASF
BASF12_BF	22-2414					BASE
WB4523_WB	22-2415					Westbred
WB0433004_WB	22-2416					Westbred
OK18510_OK	22-2417					Oklahoma
OK16107125C-17HR-2_OK	22-2418					Oklahoma
OKP17D101A666_OK	22-2419					Oklahoma
KS18H111-3_KH	22-2420	HRW	yes	KS Territory	2022	Kansas_Hays
 CO16SF027_CO	22-2421		,	,		Colorado
 CO18D297R_CO	22-2422					Colorado
KS13DH0041-35_KM	22-2423	HRW	yes	KS Providence	2022	Kansas_Manhattan
	22-2424		,			_ Check
 Yellowstone_CK	22-2425					Check
MTFH1908_MT	22-2426					Montana
	22-2427					Montana
MTCL19151_MT	22-2428					Montana
2021						
Entry ID	Entry No.	Entry Class	Released	Release Name	Release Year	Program
Jagalene	21-2401	Entry cluss	Neleuseu	Neleuse Nume	neicuse rear	Check
19NORD122	21-2402					NDSU
19NORD122	21-2402					NDSU
10BC329-17-5	21-2403	HRW	yes	AP Bigfoot	2021	AgriPro(Syngenta)
NHH17450	21-2405	HRW	no		2021	UNL
NHH17612	21-2406	HRW	no			UNL
SD12DHA01373	21-2407	HRW	yes	SD Midland		SDSU
SD15035-2	21-2408		yes			SDSU
LCH18-7071	21-2409					Limagrain
SY Monument	21-2410					Check
Jagalene	21-2411					Check
LCH17-4196	21-2412					Limagrain
SYMonument	21-2412					Check
OK15MASBx7 ARS 8-29	21-2413		Not yet			OSU
AP Roadrunner	21-2415	HRW	yes	AP Roadrunner	2020	AgriPro(Syngenta)
OK15DMASBx7 ARS 6-8	21-2416		Not yet			OSU
CO13007-F6R	21-2417		1			CSU
						-

CO16D1487	21-2418					CSU
TX15M8024	21-2419	HRW	yes	TX15M8024	2021	Texas A&M
XE4101	21-2420					Westbred(Bayer)
WB4401	21-2421					Westbred(Bayer)

2020						
Entry ID	Entry No.	Entry Class	Released	Release Name	Release Year	Program
Byrd	20-2401					Colorado
Jagalene (CC01)	20-2402					Colorado
CO14A055-258	20-2403	HRW	yes	Kivari AX	2020	Colorado
CO15D098R	20-2404	HRW	yes	Steamboat	2020	Colorado
CO16SF070	20-2405					Colorado
Jagalene (CC02)	20-2406					BASF
BASF1	20-2407					BASF
BASF2	20-2408					BASF
Jagalene (CC03)	20-2409					Limagrain
DH11HRW55-4	20-2410					Limagrain
LCH13DH-47-1675	20-2411	HRW	yes	LCSJULEP	2020	Limagrain
LCH15ACC-13-4	20-2412	HRW	yes	LCSPHOTONAX	2020	Limagrain
Jagalene (CC04)	20-2413					Kansas-Hays
Danby	20-2414					Kansas-Hays
KS15H137-2-2	20-2415	HRW	yes	KS Hamilton	2020	Kansas-Hays
Jagalene (CC05)	20-2416					Bayer
MODI4-6036	20-2417					Bayer
NEDI4-5064	20-2418					Bayer
Jagalene (CC06)	20-2419					Oklahoma
Baker's Ann	20-2420					Oklahoma
OK14124-2	20-2421	HRW	Yes	Butler's Gold	2020	Oklahoma
OK15MASBx7 ARS8-22	20-2422		not yet			Oklahoma
OK15818	20-2423	HRW	unofficiall	Gallagher	2019	Oklahoma
OK12716W Comp I	20-2424		not yet			Oklahoma
Jagalene (CC07)	20-2425					Montana
Yellowstone	20-2426					Montana
MTCL1737	20-2427		no			Montana
MT1745	20-2428					Montana
Everest	20-2429					Kansas-Manhattar
Jagalene (CC08)	20-2430					Kansas-Manhattar
KS12DH0156-88	20-2431					Kansas-Manhattar
KS090616K-1	20-2432					Kansas-Manhattar
Jagalene (CC09)	20-2433					Northern States
17NORD-94	20-2434		no			North Dakota
17NORD-96	20-2435		no			North Dakota
NE14434	20-2436		no			Nebraska
NE14696	20-2437		no			Nebraska
PSB13NEDH-14-83W	20-2438		no			Nebraska
09BC308-14-16	20-2439	HRW	yes	AP EverRock		Syngenta
SD12DHA03282	20-2440	HRW	yes	SD Andes		South Dakota

Entry ID	Entry No.	Entry Class	Released	Release Name	Release Year	Program
2019						
Byrd	19-2401	HRW	check			Colorado
Jagalene (CC01)	19-2402	HRW	check			Colorado
CO13D0787	19-2403	HRW	yes	Guardian	2019	Colorado
CO15SFD107	19-2404	HRW	yes	Fortify SF	2019	Colorado
CO15D098R	19-2405	HRW	yes	Steamboat	2020	Colorado
TAM 114	19-2406					Texas
TX14A001035	19-2407					Texas
TX14M7061	19-2408					Texas
Jagalene (CC02)	19-2409					Oklahoma
Ruby Lee	19-2410					Oklahoma
OK16D101089	19-2411	HRW	yes	Uncharted	2020	Oklahoma
OK168512	19-2412	HRW	yes	Breakthrough	2020	Oklahoma
OCW04S717T-6W	19-2413	HW	yes	Big Country	2020	Oklahoma
OK12912C-138407-2	19-2414	HRW	yes	Strad CL+	2020	Oklahoma
Jagalene (CC03)	19-2415		,			Limagrain
ERYTHR02420-2010	19-2416					Limagrain
Jagalene (CC04)	19-2417					Kansas-Hays
KS15H116-6-1	19-2418	HRW	yes	KS DALLAS	2019	Kansas-Hays
KS15H161-1-4	19-2419	HRW	yes	KS WESTERN STAR	2019	Kansas-Hays
Danby	19-2420		,			Kansas-Hays
Jagalene (CC05)	19-2421					Monsanto
MODI4-5179	19-2422	HRW	yes	WB4505	2019	Monsanto
NEDI4-5304	19-2423	HRW	yes	WB4309	2019	Monsanto
Jagalene (CC06)	19-2424		,		_0_0	Northern States
NW13493	19-2425	HWW	yes	NW13493	2021	Nebraska
NE14691	19-2426	HRW	no	10013433	2021	Nebraska
SD14113-3	19-2427	HRW	yes	Draper	2019	South Dakota
MTCS1601R	19-2428	HRW	yes	StandClear CLP	2019	Montana
MT1683	19-2429	THE	yes	Standelear CEr	2015	Montana
10111005	13-2423					Wontana
2018						
Jagalene (CC01)	18-2401					Texas
TAM 111	18-2402					Texas
TX12V7415	18-2403	HRW	yes	TAM 205	2019	Texas
LINK	18-2404					Limagrain
Jagalene (CC02)	18-2405					Limagrain
DH11HRW53-34	18-2406					Limagrain
LCI13DH-22-22	18-2407					Limagrain
MOD14-4919	18-2408				TBD	Monsanto
Jagalene (CC03)	18-2409					Monsanto
H4N13-0253	18-2410	HRW	yes	N/A	2017	Monsanto
Danby	18-2411					Kansas-Hays
Jagalene (CC04)	18-2412					Kansas-Hays
KS14H180-4-63	18-2413		no			Kansas-Hays
Jagalene (CC05)	18-2414		1			Syngenta
10BC107#115	18-2415					Syngenta
SY Monument	18-2416					Syngenta
08BC379-40-1	18-2417					Syngenta
	10 2 7 17					Syngenia

Oklahoma

Jagalene (CC06)

18-2418

Entry ID		Entry Class	Released	Release Name	Release Year	Program
Ruby Lee	18-2419					Oklahoma
OK12716-159319-13	18-2420	HRW	yes	Showdown	2018	Oklahoma
OK13621	18-2421	HRW	yes	Baker's Ann	2018	Oklahoma
OK12206-127206-2	18-2422	HRW	yes	OK Corral	2019	Oklahoma
OK1059018-129332-5	18-2423	HRW	no			Oklahoma
Jagalene (CC07)	18-2424					Northern States
NE10478-1	18-2425	HRW		LCS Valiant	2019	Nebraska
NHH144913-3	18-2426	SRW	no			Nebraska
MT1564	18-2427	HWW	yes	Flathead	2019	Montana
MTS1588	18-2428	HRW	yes	Bobcat	2019	Montana
NORD58	18-2429	HWW	no			North Dakota
NORD62	18-2430	HWW	no			North Dakota
SD09227	18-2431	HRW	yes	Thompson	2017	Sourth Dakota
SD14115-5	18-2432	HRW	yes	Winner	2019	Sourth Dakota
2017						
SY Monument	17-2401	HRW				Syngenta
SY Achieve CL2	17-2402	XWHT	yes	SY Achieve CL2	2017	Syngenta
SY 517 CL2	17-2402	HRW	yes	S 517 CL2	2017	Syngenta
Jagalene (CC01)	17-2403	HRW	yes	5 517 CL2	2017	Syngenta
Jagalene (CC02)	17-2404	HRW				Texas
TAM 111	17-2403	HRW				Texas
TX11A001295	17-2400	HRW	100	TAM 115	2019	Texas
TX12M4068	17-2407	HRW	yes	TAIVI 115	2019	Texas
			no			
Byrd	17-2409	HRW		C	2010	Colorado
CO12D1770	17-2410	HRW	yes	Canvas	2018	Colorado
Jagalene (CC03)	17-2411	HRW			2242	Colorado
CO13D1783	17-2412	HRW	yes	Whistler	2018	Colorado
CO12D2011	17-2413	HDWH	yes	Breck	2017	Colorado
Jagalene (CC04)	17-2414	HRW				Kansas-Hays
KS13HW92-3	17-2415	HDWH	yes	Venada	2018	Kansas-Hays
Danby	17-2416	HDWH				Kansas-Hays
KS14HW106-6-6	17-2417	HDWH	YES	KS SILVERADO	2019	Kansas-Hays
Yellowstone	17-2418	HRW				Montana
MT1465	17-2419	HRW	yes	FourOsix	2018	Montana
Jagalene (CC05)	17-2420	HRW				Montana
MTW1491	17-2421	HDWH	yes	Numont	2020	Montana
NI13706	17-2422	HRW	no			Nebraska
NE12561	17-2423	HRW	yes	Siege	2020	Nebraska
Jagalene (CC06)	17-2424	HRW				Nebraska
Jagalene (CC07)	17-2425	HRW				Monsanto
WB4623CLP	17-2426	HRW	yes	WB4623CLP	2014	Monsanto
WB4721	17-2427	HRW	yes	WB4721	2015	Monsanto
Ruby Lee	17-2428	HRW				Oklahoma
OK13621	17-2429	HRW	yes	Baker's Ann	2018	Oklahoma
OK12D22004-016	17-2430	HRW	no			Oklahoma
OCW04S7171T-6W	17-2431	HDWH	pending		2020	Oklahoma
Jagalene (CC08)	17-2432	HRW	-			Oklahoma

Entry ID	Entry No.	Entry Class	Released	Release Name	Release Year	Program
2016						
LCH13-048	16-2401	HRW				Limagrain
LCH13NEDH-12-27	16-2402	HRW				Limagrain
Jagalene (CC01)	16-2403	HRW				Limagrain
PSB13NEDH-11-26	16-2404	HRW				Limagrain
LCI13-069	16-2405	HWW				Limagrain
PSB13NEDH-14-83	16-2406	HWW				Limagrain
KS1256-6-4	16-2407	HRW	yes	Tatanka	2016	Kansas-Hays
Danby	16-2408	HWW	,			Kansas-Hays
Jagalene (CC02)	16-2409	HRW				Kansas-Hays
LCH13NEDH-14-53	16-2410	HWW	no			Nebraska
Jagalene (CC03)	16-2411	HRW				Nebraska
LCHNEDH-4-16	16-2412	HWW	no			Nebraska
Postrock	16-2413	HRW				Syngenta
Jagalene (CC04)	16-2414	HRW				Syngenta
AP11T2409	16-2415	HRW				Syngenta
Jagalene (CC05)	16-2416	HRW				Monsanto
HV9W10-0458	16-2417	HRW	yes	WB4515	2015	Monsanto
Jagalene (CC06)	16-2418	HRW	,			Oklahoma
Ruby Lee	16-2419	HRW				Oklahoma
OK10126	16-2420	HRW	yes	Spirit Rider	2017	Oklahoma
OK12D22004-016	16-2421	HRW	no	00.110.110.001		Oklahoma
OK12912C	16-2422	HRW	under Cons	ideration		Oklahoma
OK13209	16-2423	HRW	yes	Green Hammer	2018	Oklahoma
Everest	16-2424	HRW	yes	or cert manner	2010	Kansas-Manhattan
Jagalene (CC07)	16-2425	HRW				Kansas-Manhattan
Larry	16-2426	HRW				Kansas-Manhattan
Zenda	16-2427	HRW				Kansas-Manhattan
2015						
Jagalene (CC01)	15-2401	HRW				Kansas-Hays
Danby (IC)	15-2402	HRW				Kansas-Hays
KS11HW39-5	15-2403	HRW	yes	Joe	2015	Kansas-Hays
Jagalene (CC04)	15-2404	HRW				Nebraska
NE1059	15-2405	HRW	yes	Ruth	2016	Nebraska
Jagalene (CC06)	15-2406	HRW				Monsanto
BZ9W09-2075	15-2407	HWW	yes	WB4575	2015	Monsanto
HV9W10-1002	15-2408	HWW	yes	WB4303	2015	Monsanto
Jagalene (CC09)	15-2409	HRW				Colorado
Byrd (IC)	15-2410	HRW				Colorado
CO11D1397	15-2411	HRW				Colorado
CO11D1539	15-2412	HRW				Colorado
CO11D1767	15-2413	HRW				Colorado
Jagalene (CC14)	15-2414	HRW				Oklahoma
Gallagher (IC)	15-2415	HRW				Oklahoma
OK11D25056	15-2416	HRW	yes	Smith's Gold	2017	Oklahoma
OK13625	15-2417	HRW	yes	Skydance	2017	Oklahoma
OK10728W	15-2418	HWW	yes	Stardust	2017	Oklahoma
Jagalene (CC19)	15-2419	HRW				Montana

	Entry ID	Entry No.	Entry Class	Released	Release Name	Release Year	Program
	owstone (IC)	15-2420	HRW				Montana
ſ	MTS1224	15-2421	HRW	yes	Loma	2016	Montana
	MT1265	15-2422	HRW				Montana
I	Ideal (IC)	15-2423	HRW				South Dakota
S	D10257-2	15-2424	HRW	yes	Oahe	2016	South Dakota
LCH	13DH-20-87	15-2425	HRW	yes	LCS Chrome	2015	Limagrain
	2014						
Jaga	alene (CC01)	14-2401	HRW				Kansas_Hays
C	Danby (IC)	14-2402	HWW				Kansas_Hays
KS	11HW15-4	14-2403	HWW				Kansas_Hays
K	S11W39-5	14-2404	HWW				Kansas_Hays
Jaga	alene (CC05)	14-2405	HRW				Texas_Amarillo
-	M 111 (IC)	14-2406	HRW				_ Texas_Amarillo
	08A001249	14-2407	HRW				Texas_Amarillo
	09A001194	14-2408	HRW				Texas Amarillo
	X09D1172	14-2409	HRW				Texas_Amarillo
	alene (CC10)	14-2410	HRW				Colorado
-	Byrd (IC)	14-2411	HRW				Colorado
	011D174	14-2412	HRW	yes	Avery	2015	Colorado
	CO11D446	14-2413	HRW	yes	Langin	2015	Colorado
	galene (CC)	14-2414	HRW	yes	Langin	2010	Nebraska
-	amelot (IC)	14-2415	HRW				Nebraska
	NE07531	14-2415	HRW				Nebraska
	NE09521	14-2410	HRW				Nebraska
	alene (CC18)	14-2417	HRW				Montana
-	owstone (IC)	14-2418	HRW				Montana
	MT1078	14-2419	HRW				Montana
	MT1138	14-2420	HRW				Montana
	alene (CC22)						Oklahoma
-		14-2422	HRW				Oklahoma
	iby Lee (IC)	14-2423	HRW		Devetlary	2015	
	OK09125	14-2424	HRW	yes	Bentley	2015	Oklahoma
	OK10126	14-2425	HRW	yes	Spirit Rider	2017	Oklahoma
-	alene (CC26)	14-2426	HRW				Kansas_Manhattan
	KanMark	14-2427	HRW				Kansas_Manhattan
	5BC722#25	14-2428	HRW	yes	SY Flint	2015	Agripro
06	5BC796#68	14-2429	HRW	yes	SY Sunrise	2015	Agripro
	2012						
	2013	40.0404					
	Blend (check)	13-2401	HRW				Limagrain
	_CH08-80	13-2402	HRW				Limagrain
	ICS Mint	13-2403	HRW	yes	LCS Mint	2012	Limagrain
	nby (check)	13-2404	HWW				Kansas-Hays
	Dakley CL	13-2405	HRW	yes	Oakley CL	2013	Kansas-Hays
	10HW78-1	13-2406	HWW				Kansas-Hays
	nan (check)	13-2407	HRW				South Dakota
	SD08200	13-2408	HRW				South Dakota
(SD09192	13-2409	HRW				South Dakota
	orock (check)	13-2410	HRW				

Entry ID	Entry No.		Released	Release Name	Release Year	Program
04BC574-2	13-2411	HRW	yes	SY Monument	2014	Agripro
Millennium (check)	13-2412	HRW				Nebraska
NE09521	13-2413	HRW				Nebraska
NE08499	13-2414	HRW				Nebraska
Yellowstone (check)	13-2415	HRW				Montana
MT1090	13-2416	HRW				Montana
MTW08168	13-2417	HWW	yes	WB3768	2013	Montana
Ruby Lee (check)	13-2418	HRW				Oklahoma
Doublestop CL+	13-2419	HRW	yes	Doublestop CL+	2013	Oklahoma
OK09125	13-2420	HRW	yes	Bentley	2015	Oklahoma
2012	_					
2012						
WB-Stout (check)	12-2401	HRW				Westbred
HV9W07-1028	12-2402	HRW				Westbred
Millennium (check)	12-2403	HRW				Nebraska
NW07505	12-2404	HWW				Nebraska
NE06545	12-2405	HRW	yes	Freeman	2012	Nebraska
NE06607	12-2406	HRW				Nebraska
Byrd (check)	12-2407	HRW				Colorado
Snowmass (check)	12-2408	HWW				Colorado
CO07W245	12-2409	HWW	yes	Antero	2012	Colorado
CO07W722-F5	12-2410	HWW				Colorado
Billings (check)	12-2411	HRW				Oklahoma
Ruby Lee	12-2412	HRW				Oklahoma
Gallagher (OK07214)	12-2413	HRW	yes		2012	Oklahoma
lba (OK07209)	12-2414	HRW	yes		2012	Oklahoma
OK09634	12-2415	HRW	no			Oklahoma
Lyman (check)	12-2416	HRW				South Dakota
SD08080	12-2417	HRW				South Dakota
SD06158	12-2418	HRW	yes	Redfield	2013	South Dakota
Yellowstone (check)	12-2419	HRW	,		2020	Montana
MT08172	12-2420	HRW	yes	Colter	2012	Montana
MT0978	12-2421	HRW	yes	Northern	2012	Montana
TAM 111 (check)	12-2421	HRW	yes	Northern	2015	Texas
TX07A001505	12-2422	HRW				Texas
TX03A0563-07	12-2423	HRW				Texas
1000000000	TT 7474					16703
2011						
Danby (check)	11-2401	HWW				Kansas-Hays
Tiger	11-2402	HWW	yes			Kansas-Hays
KS08HW35-1	11-2403	HWW	yes	Clara CL	2011	Kansas-Hays
PostRock (check)	11-2404	HRW				AgriPro
SY Wolf	11-2405	HRW	yes			AgriPro
Syngenta Exp 138-45	11-2406	HRW	yes	SY Southwind	2012	AgriPro
Fuller (check)	11-2407	HRW	,			Kansas-Manhatta
KS020319-7-3	11-2408	HRW	yes	1863	2012	Kansas-Manhatta
KS020633M-13	11-2409	HRW	no	1000	2012	Kansas-Manhatta
McGill (check)	11-2409	HRW	10			Nebraska
			~~			
NE05496	11-2411	HRW	no			Nebraska

NE05548 11-2412 HRW no Nebraska Jagalene (check) 11-2413 HRW no Nebraska HV39V06-509 11-2414 HRW no Nebraska Vellowstone (check) 11-2416 HRW vestbred Montana MT0808 11-2417 HRW yes Warhorse 2013 Montana MT0871 11-2419 HRW yes Bedfield South Dakota SD06153 11-2420 HRW yes Redfield South Dakota SD05184 11-2421 HRW yes Redfield South Dakota SD05185 10-2402 HRW yes Redfield Soluth Dakota SD05185 10-2402 HRW yes Bedfield Soluth Dakota SD05185 10-2403 HRW yes Denali 2011 CSU C006052 10-2405 HRW yes Barawi CL Plus 2011 CSU C006623 10-2405 HRW	Entry ID	Entry No.	Entry Class	Released	Release Name	Release Year	Program
Jagalene (check) 11-2415 HRW WB-Grainfield 2012 Westbred Montana MTS0808 11-2415 HRW yes WB-Grainfield 2013 Montana MT0801 11-2417 HRW no Montana Montana Lyman (check) 11-2418 HRW no South Dakota South Dakota SD05158 11-2420 HRW yes Redfield South Dakota SD05158 10-2401 HRW yes Redfield SDSU SD05158 10-2403 HRW yes Redfield SDSU SD05158 10-2404 HRW yes Brawl CL Plus Z011 CSU C006521 10-2405 HRW yes Brawl CL Plus Z011 CSU Millennium (check) 10-2408 HRW yes Bayrd Z011 CSU OK05526 10-2409 HRW no NU NU NU NE04490 10-2410 HRW no NU	NE05548	11-2412	HRW	no			Nebraska
İV9006-509 11-2415 HWW yes WB-Grainfield 2012 Westbred Montana MT0871 11-2416 HRW no Montana Montana MT0871 11-2418 HRW no South Dakota South Dakota SD06158 11-2420 HRW yes Redfield South Dakota SD05184 11-2421 HRW no South Dakota SD05185 11-2420 HRW yes Redfield South Dakota SD05184 10-2401 HRW yes Redfield SDSU SD0518 10-2402 HRW yes Budeal 2011 CSU C006052 10-2406 HRW yes Brawl CL Plus 2011 CSU C006052 10-2406 HRW yes Brawl CL Plus 2011 CSU C006052 10-2406 HRW no NU NU NU NE04490 10-2408 HRW no OSU OSU	NI08708	11-2413	HRW	no			Nebraska
Yellowstone (check) 11-2416 HRW yes Warhorse 2013 Montana MT0808 11-2417 HRW no Montana South Dakota Lyman (check) 11-2419 HRW no South Dakota SD06158 11-2420 HRW yes Redfield South Dakota SD05184 11-2420 HRW yes Redfield SDSU SD05185 10-2403 HRW yes Redfield SDSU SD05185 10-2403 HRW yes Brawl CL Plus 2011 CSU C00652 10-2405 HRW yes Brawl CL Plus 2011 CSU C00652 10-2406 HRW yes Brawl CL Plus 2011 CSU C00652 10-2406 HRW no NU NU NU NE04490 10-2409 HRW no NU NU NE04490 10-2410 HRW no OSU OSU OK052526	Jagalene (check)	11-2414	HRW				Westbred
MT50808 11-2417 HRW yes Warhorse 2013 Montana MT0871 11-2418 HRW no South Dakota South Dakota SD06158 11-2420 HRW yes Redfield South Dakota SD07184 11-2421 HRW no South Dakota South Dakota SD05178 11-2421 HRW yes Redfield 2011 SDSU SD05178 10-2401 HRW yes Ideal 2011 SDSU SD05178 10-2403 HRW yes Denali 2011 CSU C006030-2 10-2405 HRW yes Brawi CL Plus 2011 CSU C006052 10-2407 HRW yes Brawi CL Plus 2011 CSU Millennium (check) 10-2408 HRW no NU NU NE03490 10-2409 HRW no NU NU NE03490 10-2410 HRW no NU NU	HV9W06-509	11-2415	HWW	yes	WB-Grainfield	2012	Westbred
MT0871 11-2418 HRW no Montana Lyman (check) 11-2419 HRW yes Redfield South Dakota SD05158 11-2420 HRW yes Redfield South Dakota SD07184 11-2421 HRW no SDSU South Dakota SD05118-1 10-2402 HRW yes Redfield SDSU SD06158 10-2403 HRW yes Redfield SDSU C005030-2 10-2404 HRW yes Denali 2011 CSU C006052 10-2405 HRW yes Brawl CL Plus 2011 CSU C006052 10-2406 HRW yes Brawl CL Plus 2011 CSU Millennium (check) 10-2408 HRW no NU NU NE03490 10-2409 HRW no NU NU MSU490 10-2411 HRW no SU SU OK05256 10-2412 HRW <td>Yellowstone (check)</td> <td>11-2416</td> <td>HRW</td> <td></td> <td></td> <td></td> <td>Montana</td>	Yellowstone (check)	11-2416	HRW				Montana
Lyman (check) 11-2419 HRW yes Redfield South Dakota SD05158 11-2420 HRW no South Dakota SD07184 11-2421 HRW no South Dakota SD07184 11-2421 HRW no South Dakota SD05118-1 10-2402 HRW yes Ideal 2011 SDSU SD06158 10-2403 HRW yes Redfield 2011 SDSU C0050303-2 10-2404 HRW yes Brawl CL Plus 2011 CSU C006652 10-2405 HRW yes Brawl CL Plus 2011 CSU C006424 10-2407 HRW yes Byrd 2011 CSU C006425 10-2410 HRW no NU NU NU NE04490 10-2418 HRW no NU NU NU NE04490 10-2413 HRW yes Garrison 2011 OSU <td< td=""><td>MTS0808</td><td>11-2417</td><td>HRW</td><td>yes</td><td>Warhorse</td><td>2013</td><td>Montana</td></td<>	MTS0808	11-2417	HRW	yes	Warhorse	2013	Montana
SD06158 11-2420 HRW yes Redfield South Dakota SD07184 11-2421 HRW no South Dakota Lyman (check) 10-2401 HRW yes Ideal 2011 SDSU SD0518-1 10-2402 HRW yes Redfield SDSU SDSU SD06158 10-2403 HRW yes Redfield SDSU SDSU C005030-2 10-2406 HRW yes Brawl CL Plus 2011 CSU C006032 10-2406 HRW yes Brawl CL Plus 2011 CSU C006424 10-2409 HRW no NU NU <td>MT0871</td> <td>11-2418</td> <td>HRW</td> <td>no</td> <td></td> <td></td> <td>Montana</td>	MT0871	11-2418	HRW	no			Montana
SD07184 11-2421 HRW no South Dakota Lyman (check) 10-2401 HRW yes Ideal 2011 SDSU SD05118-1 10-2402 HRW yes Redfield SDSU SD05158 10-2403 HRW yes Redfield SDSU C0050303-2 10-2405 HRW yes Denali 2011 CSU C006652 10-2406 HRW yes Brawl CL Plus 2011 CSU C006652 10-2407 HRW yes Byrd 2011 CSU C006624 10-2407 HRW yes Byrd 2011 CSU Millennium (check) 10-2408 HRW no NU NU NU NE03490 10-2410 HRW no NU NU NU Billings (check) 10-2411 HRW no NU SU OSU OK05526 10-2415 HRW no Westbred	Lyman (check)	11-2419	HRW				South Dakota
Sum Sum <thsum< th=""> <thsum< th=""> <thsum< th=""></thsum<></thsum<></thsum<>	SD06158	11-2420	HRW	yes	Redfield		South Dakota
Lyman (check) 10-2401 HRW yes Ideal 2011 SDSU SD05118-1 10-2402 HRW yes Redfield 2011 SDSU SD06158 10-2403 HRW yes Redfield 2011 CSU C0050303-2 10-2405 HRW yes Brawl CL Plus 2011 CSU C006022 10-2406 HRW yes Brawl CL Plus 2011 CSU C006024 10-2408 HRW yes Byrd 2011 CSU Millennium (check) 10-2408 HRW no NU NU NE03490 10-2410 HRW no NU NU NE04490 10-2410 HRW no NU OSU OK05526 10-2413 HRW yes Garrison 2011 OSU OK07231 10-2415 HRW no Westbred Westbred HV9W06-262R 10-2417 HWW no TAMU TAMU </td <td>SD07184</td> <td>11-2421</td> <td>HRW</td> <td>no</td> <td></td> <td></td> <td>South Dakota</td>	SD07184	11-2421	HRW	no			South Dakota
Lyman (check) 10-2401 HRW yes Ideal 2011 SDSU SD05118-1 10-2402 HRW yes Redfield 2011 SDSU SD06158 10-2403 HRW yes Redfield 2011 CSU C0050303-2 10-2405 HRW yes Brawl CL Plus 2011 CSU C006022 10-2406 HRW yes Brawl CL Plus 2011 CSU C006024 10-2408 HRW yes Byrd 2011 CSU Millennium (check) 10-2408 HRW no NU NU NE03490 10-2410 HRW no NU NU NE04490 10-2410 HRW no NU OSU OK05526 10-2413 HRW yes Garrison 2011 OSU OK07231 10-2415 HRW no Westbred Westbred HV9W06-262R 10-2417 HWW no TAMU TAMU </td <td>2010</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2010						
SD05118-1 10-2402 HRW yes Ideal 2011 SDSU SD06158 10-2403 HRW yes Redfield CDU Hatcher (check) 10-2405 HRW yes Denali 2011 CSU C0050303-2 10-2406 HRW yes Brawl CL Plus 2011 CSU C006424 10-2407 HRW yes Brawl CL Plus 2011 CSU Millennium (check) 10-2408 HRW no NU NU NE03490 10-2409 HRW no NU NU NE04490 10-2410 HRW no NU NU OK05526 10-2412 HRW yes Garrison 2011 OSU OK07231 10-2413 HRW yes Garrison 2011 OSU MSU 10-2417 HRW no Westbred MSU H9W06-218W 10-2417 HRW no TAMU TAMU		10-2401	HRW				SDSU
SD06158 10-2403 HRW yes Redfield SDSU Hatcher (check) 10-2404 HRW CSU CSU C0050303-2 10-2405 HRW yes Denali 2011 CSU C006652 10-2407 HRW yes Brawl CL Plus 2011 CSU C006424 10-2407 HRW yes Byrd 2011 CSU Millennium (check) 10-2408 HRW no NU NU NE03490 10-2410 HRW no NU NU 0K05526 10-2411 HRW no NU OSU 0K05521 10-2413 HRW yes Garrison 2011 OSU 0K07231 10-2414 HRW no Westbred HV9906-2128W 10-2415 HRW no Westbred MSU 10-2418 HRW no TAMU TAMU TVOSA001822 10-2420 HRW Yes MSU	-			VOC	Ideal	2011	
Hatcher (check) 10-2404 HRW yes Denali 2011 CSU CO050303-2 10-2405 HRW yes Brawl CL Plus 2011 CSU CO06052 10-2406 HRW yes Byrd 2011 CSU Millennium (check) 10-2408 HRW no NU NU NE03490 10-2409 HRW no NU NU NE04490 10-2410 HRW no NU NU Billings (check) 10-2413 HRW yes Garrison 2011 OSU OK05212 10-2413 HRW yes Garrison 2011 OSU OK07231 10-2415 HRW no Westbred HV9W06-262R 10-2415 HRW no Westbred MTS0721 10-2419 HRW no MSU TAMU TAM 111 (check) 10-2420 HRW no TAMU TX05A001822 10-2421 HRW <td< td=""><td></td><td></td><td></td><td>•</td><td></td><td>2011</td><td></td></td<>				•		2011	
CO050303-2 10-2405 HRW yes Denali 2011 CSU CO06052 10-2406 HRW yes Brawl CL Plus 2011 CSU Millennium (check) 10-2407 HRW yes Byrd 2011 CSU Millennium (check) 10-2409 HRW no NU NU NE04490 10-2410 HRW no NU NU Billings (check) 10-2411 HRW no NU OSU OK05526 10-2412 HRW yes Garrison 2011 OSU OK07231 10-2414 HRW no Westbred Westbred HV9W06-262R 10-2415 HRW no Westbred HV9W06-218W 10-2417 HWW no Westbred MSU TAM 111 (check) 10-2418 HRW MSU MTS0721 10-2419 HRW no TAMU TX05A001822 10-2420 HRW Wesbred WSU </td <td></td> <td></td> <td></td> <td>yes</td> <td>Reulielu</td> <td></td> <td></td>				yes	Reulielu		
C006052 10-2406 HRW yes Brawl CL Plus 2011 CSU Millennium (check) 10-2407 HRW yes Byrd 2011 CSU Millennium (check) 10-2408 HRW no NU NU NE03490 10-2410 HRW no NU NU NE04490 10-2411 HRW no NU NU OK05526 10-2412 HRW yes Garrison 2011 OSU OK05212 10-2413 HRW yes Garrison 2011 OSU OK05211 10-2414 HRW no Westbred Hy9W06-252R 10-2415 HRW no Westbred Hy9W06-218W 10-2417 HWW no MSU MSU MTAM 111 (check) 10-2420 HRW no TAMU TAMU TX06A001263 10-2420 HRW no TAMU TAMU TAMU 111 (check) 09-2401 HRW <				100	Donali	2011	
C006424 10-2407 HRW yes Byrd 2011 CSU Millennium (check) 10-2408 HRW no NU NE03490 10-2409 HRW no NU NE04490 10-2410 HRW no NU Billings (check) 10-2411 HRW no OSU 0K05526 10-2412 HRW yes Ruby Lee 2011 OSU 0K05212 10-2413 HRW yes Garrison 2011 OSU 0K05212 10-2414 HRW no Westbred Westbred HV9W06-262R 10-2415 HRW no Westbred HV9W06-218W 10-2417 HWW no Westbred MTAN 111 (check) 10-2418 HRW MSU MSU TAM 111 (check) 10-2420 HRW no TAMU TX05A001263 10-2422 HRW no TAMU Stout (HV9W03-539R) 09-2402 HRW No </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Millennium (check) 10-2408 HRW NU NU NE03490 10-2409 HRW no NU NE04490 10-2410 HRW no NU Billings (check) 10-2411 HRW no NU Billings (check) 10-2412 HRW yes Ruby Lee 2011 OSU OK055212 10-2413 HRW yes Garrison 2011 OSU OK07231 10-2414 HRW no OSU OsU Westbred HV9W06-262R 10-2417 HWW no Westbred Westbred H9W06-218W 10-2417 HWW no MSU MSU MTS0721 10-2417 HRW no TAMU TAMU TX05A001822 10-2420 HRW no TAMU TAMU TX06A001263 10-2422 HRW no TAMU TAMU Stout (Hv9W03-5358) 09-2402 HRW yes KSU-Hays KSU-Hays				•			
NE03490 10-2409 HRW no NU NE04490 10-2410 HRW no NU Billings (check) 10-2411 HRW no OSU OK05526 10-2413 HRW yes Garrison 2011 OSU OK05212 10-2413 HRW yes Garrison 2011 OSU OK07231 10-2415 HRW no OSU OSU Smoky Hill (check) 10-2415 HRW no Westbred HV9W06-252R 10-2416 HRW no Westbred HV9W06-218W 10-2419 HRW no MSU MTS0721 10-2419 HRW yes Bearpaw 2011 MSU TAM 111 (check) 10-2420 HRW no TAMU TAMU TX05A001822 10-2421 HRW no KSU-Hays KSU-Hays Stout (HV9W03-539R) 09-2402 HRW no CSU KSU-Hays Tiger				yes	Byra	2011	
NE04490 10-2410 HRW no NU Billings (check) 10-2411 HRW yes Ruby Lee 2011 OSU OK05526 10-2412 HRW yes Garrison 2011 OSU OK05212 10-2413 HRW yes Garrison 2011 OSU Smoky Hill (check) 10-2415 HRW no Westbred HV9W06-262R 10-2416 HRW no Westbred HV9W06-262R 10-2417 HWW no Westbred HV9W06-262R 10-2418 HRW no MSU MTS0721 10-2419 HRW no MSU MTS0721 10-2420 HRW no TAMU TX06A001263 10-2422 HRW no TAMU TX06A001263 10-2422 HRW no TAMU Tger 09-2401 HRW yes WB-Stout 2009 Westbred Stout (HV9W03-539R) 09-2402 HRW							
Billings (check) 10-2411 HRW yes Ruby Lee 2011 OSU OK05526 10-2412 HRW yes Garrison 2011 OSU OK05212 10-2413 HRW yes Garrison 2011 OSU OK07231 10-2414 HRW no Westbred Westbred HV9W06-262R 10-2415 HRW no Westbred HV9W06-218W 10-2417 HWW no Westbred MTS0721 10-2419 HRW yes Bearpaw 2011 MSU MTS0721 10-2412 HRW yes Bearpaw 2011 MSU TAM 111 (check) 10-2420 HRW no TAMU TAMU TX06A001263 10-2422 HRW no TAMU TAMU Stout (HV9W03-539R) 09-2401 HRW yes Westbred KSU-Hays KSU-Hays GSU MY yes CO41 KSU-Hays KSU-Hays <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
OK05526 10-2412 HRW yes Ruby Lee 2011 OSU OK05212 10-2413 HRW yes Garrison 2011 OSU OK07231 10-2414 HRW no OSU OSU Smoky Hill (check) 10-2415 HRW no Westbred HV9W06-262R 10-2416 HRW no Westbred Yellowstone (check) 10-2417 HWW no MSU MTS0721 10-2418 HRW yes Bearpaw 2011 MSU TAM 111 (check) 10-2420 HRW no TAMU TAMU TX05A001822 10-2421 HRW no TAMU TAMU TX06A001263 10-2422 HRW no TAMU TAMU TX06A001263 09-2401 HRW no KSU-Hays KSU-Hays Stout (HV9W03-539R) 09-2402 HRW yes CSU CSU C04333 09-2405 HRW no CSU				no			
OK05212 10-2413 HRW yes Garrison 2011 OSU OK07231 10-2414 HRW no OSU OSU Smoky Hill (check) 10-2415 HRW no Westbred HV9W06-262R 10-2416 HRW no Westbred HV9W06-218W 10-2417 HWW no Westbred Yellowstone (check) 10-2419 HRW yes Bearpaw 2011 MSU TAM 111 (check) 10-2420 HRW no TAMU TAMU TX05A001822 10-2421 HRW no TAMU TAMU TX06A001263 10-2422 HRW no TAMU TAMU TX06A001263 10-2403 HWW no KSU-Hays KSU-Hays Stout (HV9W03-539R) 09-2402 HRW yes WB-Stout 2009 Westbred KSU-Hays Tiger 09-2403 HWW Yes KSU-Hays KSU-Hays C04333 09-2406						2244	
OK07231 10-2414 HRW no OSU Smoky Hill (check) 10-2415 HRW Westbred HV9W06-262R 10-2416 HRW no Westbred HV9W06-218W 10-2417 HWW no Westbred Yellowstone (check) 10-2418 HRW MSU MSU MTS0721 10-2420 HRW yes Bearpaw 2011 MSU TAM 111 (check) 10-24220 HRW no TAMU TAMU TX05A001822 10-2422 HRW no TAMU TX06A001263 10-2422 HRW no TAMU Stout (HV9W03-539R) 09-2402 HRW yes WB-Stout 2009 Westbred Stout (HV9W03-539R) 09-2402 HRW yes KSU-Hays KSU-Hays Tiger 09-2404 HWW yes KSU-Hays KSU-Hays COu4393 09-2405 HRW No CSU CSU OK Bullet (check) 09-2407 HRW No CSU CSU OK Bullet (check)							
Smoky Hill (check) 10-2415 HRW NO Westbred HV9W06-262R 10-2416 HRW NO Westbred HV9W06-218W 10-2417 HWW NO Westbred Yellowstone (check) 10-2418 HRW MSU MSU MTS0721 10-2419 HRW yes Bearpaw 2011 MSU TAM 111 (check) 10-2420 HRW no TAMU TAMU TX05A001822 10-2421 HRW no TAMU TAMU TX06A001263 10-2422 HRW no TAMU TAMU Stoot (HV9W03-539R) 09-2401 HRW yes WB-Stout 2009 Westbred Stout (HV9W03-539R) 09-2402 HRW yes WB-Stout 2009 Westbred KSU-Hays Tiger 09-2404 HWW yes KSU-Hays KSU-Hays C004393 09-2405 HRW no CSU CSU OK Bullet (check) 09-2407 HRW no CSU OSU OK Bullet (check) 09-2408				•	Garrison	2011	
HV9W06-262R 10-2416 HRW no Westbred HV9W06-218W 10-2417 HWW no Westbred Yellowstone (check) 10-2418 HRW MSU MSU MTS0721 10-2419 HRW yes Bearpaw 2011 MSU TAM 111 (check) 10-2420 HRW no TAMU TAMU TX05A001822 10-2421 HRW no TAMU TAMU TX06A001263 10-2422 HRW no TAMU TAMU Smoky Hill (check) 09-2401 HRW yes WB-Stout 2009 Westbred Stout (HV9W03-539R) 09-2402 HRW yes WB-Stout 2009 Westbred KSU-Hays Tiger 09-2401 HRW yes WB-Stout 2009 KSU-Hays Tiger 09-2403 HWW yes CSU CSU CSU CSU CSU CO04393 09-2406 HRW no CSU CSU CSU CSU CSU CSU CSU CSU CSU CSU </td <td></td> <td></td> <td></td> <td>no</td> <td></td> <td></td> <td></td>				no			
HV9W06-218W10-2417HWWnoWestbredYellowstone (check)10-2418HRWyesBearpaw2011MSUMTS072110-2419HRWyesBearpaw2011MSUTAM 111 (check)10-2420HRWnoTAMUTX05A00182210-2421HRWnoTAMUTX06A00126310-2422HRWnoTAMUTX06A00126309-2401HRWyesWB-Stout2009Smoky Hill (check)09-2401HRWyesWB-Stout2009Smoky Hill (check)09-2403HWWyesWB-Stout2009KSU-HaysGSUHRWyesCSUKSU-HaysTiger09-2403HWWyesCSUCSUCO0439309-2405HRWnoCSUCSUCO0439309-2406HRWnoCSUCSUOK Bullet (check)09-2408HRWnoCSUOK Bullet (check)09-2409HRWyesRuby Lee2011OSUBillings09-2409HRWyesRuby Lee2011OSUOK0552609-2410HRWyesRuby Lee2011OSUPostRock (check)09-2411HRWyesAgriProAgriProCJ09-2412HRWyesAgriProAgriPro							
Yellowstone (check)10-2418HRWyesBearpaw2011MSUMTS072110-2420HRWYesBearpaw2011MSUTAM 111 (check)10-2420HRWnoTAMUTAMUTX05A00182210-2421HRWnoTAMUTAMUTX06A00126310-2422HRWnoYesYesSmoky Hill (check)09-2401HRWyesWB-Stout2009WestbredSmoky Hill (check)09-2402HRWyesWB-Stout2009WestbredStout (HV9W03-539R)09-2402HRWyesC09WestbredKotu (check)09-2403HWWYesCSUCSUC00439309-2406HRWnoCSUCSUC00449909-2407HRWnoCSUCSUC00449909-2407HRWnoCSUCSUC00459309-2409HRWyesAgriProOSUBillings09-2409HRWyesCSUOSUDK0552609-2410HRWYesAgriProAgriProCJ09-2412HRWyesAgriProAgriPro							
MTS072110-2419HRWyesBearpaw2011MSUTAM 111 (check)10-2420HRWnoTAMUTX05A00182210-2421HRWnoTAMUTX06A00126310-2422HRWnoTAMUSmoky Hill (check)09-2401HRWyesWB-Stout2009Smoky Hill (check)09-2402HRWyesWB-Stout2009WestbredStout (HV9W03-539R)09-2402HRWyesWB-Stout2009WestbredRont (check)09-2403HWWyesCSUCSUCSUC00439309-2405HRWnoCSUCSUC00449909-2407HRWnoCSUCSUC00449909-2408HRWnoCSUCSUOK Bullet (check)09-2408HRWyesRuby Lee2011OSUBillings09-2409HRWyesRuby Lee2011OSUPostRock (check)09-2411HRWyesAgriProAgriProCJ09-2412HRWyesAgriProAgriPro				no			
TAM 111 (check)10-2420HRWnoTAMUTX05A00182210-2421HRWnoTAMUTX06A00126310-2422HRWnoTAMUSmoky Hill (check)09-2401HRWnoWestbredSmoky Hill (check)09-2402HRWyesWB-Stout2009WestbredSmoky Hill (check)09-2403HWWyesWB-Stout2009WestbredRonL (check)09-2403HWWyesCSUCSUC00439309-2405HRWnoCSUCSUC00439309-2406HRWnoCSUCSUOK Bullet (check)09-2408HRWyesRuby Lee2011OSUBillings09-2409HRWyesRuby Lee2011OSUOK 552609-2410HRWyesRuby Lee2011OSUPostRock (check)09-2411HRWyesRuby Lee2011AgriProCJ09-2412HRWyesRuby Lee2011AgriPro							
TX05A001822 TX06A00126310-2421HRWnoTAMU TAMUTX06A00126310-2422HRWnoTAMUSmoky Hill (check)09-2401HRWyesWB-Stout2009Smoky Hill (check)09-2402HRWyesWB-Stout2009Stout (HV9W03-539R)09-2402HRWyesWB-Stout2009RonL (check)09-2403HWWKSU-HaysKSU-HaysTiger09-2404HWWyesKSU-HaysCO0439309-2405HRWcSUCSUCO0439309-2406HRWnoCSUCO0449909-2407HRWnoCSUOK Bullet (check)09-2409HRWyesOSUBillings09-2409HRWyesRuby Lee2011OSU0552609-2410HRWyesAgriProCJ09-2412HRWyesAgriPro				yes	Bearpaw	2011	
TX06A00126310-2422HRWnoTAMU2009Smoky Hill (check)09-2401HRWyesWB-Stout2009WestbredStout (HV9W03-539R)09-2402HRWyesWB-Stout2009WestbredRonL (check)09-2403HWWyesWB-Stout2009WestbredRonL (check)09-2403HWWyesWB-Stout2009WestbredKSU-HaysTiger09-2403HWWyesCSUCSUC00439309-2405HRWnoCSUCSUC00449909-2406HRWnoCSUCSUOK Bullet (check)09-2408HRWyesRuby Lee2011OSUBillings09-2409HRWyesRuby Lee2011OSUPostRock (check)09-2411HRWyesRuby Lee2011AgriProCJ09-2412HRWyesRuby Lee2011AgriPro							
2009Smoky Hill (check)09-2401HRWWestbredStout (HV9W03-539R)09-2402HRWYesWB-Stout2009WestbredRonL (check)09-2403HWWYesKSU-HaysTiger09-2404HWWYesKSU-HaysHatcher (check)09-2405HRWYesCSUCO0439309-2406HRWnoCSUCO0449909-2407HRWnoCSUOK Bullet (check)09-2409HRWYesOSUBillings09-2409HRWYesOSUOK0552609-2410HRWYes2011OSUPostRock (check)09-2412HRWYesAgriProCJ09-2412HRWYesAgriPro				no			
Smoky Hill (check)09-2401HRWyesWB-Stout2009WestbredStout (HV9W03-539R)09-2402HRWyesWB-Stout2009WestbredRonL (check)09-2403HWWyesKSU-HaysTiger09-2404HWWyesKSU-HaysHatcher (check)09-2405HRWyesCSUC00439309-2406HRWnoCSUC00449909-2407HRWnoCSUOK Bullet (check)09-2408HRWyesOSUBillings09-2409HRWyesOSUOK0552609-2410HRWyesRuby Lee2011OSUPostRock (check)09-2412HRWyesAgriProCJ09-2412HRWyesAgriPro	TX06A001263	10-2422	HRW	no			TAMU
Stout (HV9W03-539R) 09-2402 HRW yes WB-Stout 2009 Westbred RonL (check) 09-2403 HWW yes WB-Stout 2009 Westbred Tiger 09-2403 HWW yes KSU-Hays KSU-Hays Hatcher (check) 09-2405 HRW yes CSU CSU C004393 09-2406 HRW no CSU CSU C004499 09-2407 HRW no CSU CSU OK Bullet (check) 09-2408 HRW yes OSU OSU Billings 09-2409 HRW yes Ruby Lee 2011 OSU PostRock (check) 09-2411 HRW yes Ruby Lee 2011 AgriPro CJ 09-2412 HRW yes Ruby Lee 2011 AgriPro	2009						
RonL (check) 09-2403 HWW KSU-Hays Tiger 09-2404 HWW yes KSU-Hays Hatcher (check) 09-2405 HRW CSU C004393 09-2406 HRW no CSU C004499 09-2407 HRW no CSU C004499 09-2407 HRW no CSU OK Bullet (check) 09-2408 HRW oSU OSU Billings 09-2409 HRW yes OSU OK055266 09-2410 HRW yes Ruby Lee 2011 OSU PostRock (check) 09-2412 HRW yes AgriPro AgriPro	Smoky Hill (check)	09-2401	HRW				Westbred
Tiger 09-2404 HWW yes KSU-Hays Hatcher (check) 09-2405 HRW CSU CSU C004393 09-2406 HRW no CSU C004499 09-2407 HRW no CSU OK Bullet (check) 09-2408 HRW no CSU OK Bullet (check) 09-2408 HRW yes OSU Billings 09-2409 HRW yes OSU OK05526 09-2410 HRW yes Ruby Lee 2011 OSU PostRock (check) 09-2411 HRW yes Ruby Lee 2011 AgriPro CJ 09-2412 HRW yes Kuby Lee 2011 AgriPro	Stout (HV9W03-539R)	09-2402	HRW	yes	WB-Stout	2009	Westbred
Tiger 09-2404 HWW yes KSU-Hays Hatcher (check) 09-2405 HRW CSU CSU C004393 09-2406 HRW no CSU C004499 09-2407 HRW no CSU OK Bullet (check) 09-2408 HRW no CSU OK Bullet (check) 09-2409 HRW yes OSU Billings 09-2409 HRW yes OSU OK05526 09-2410 HRW yes Ruby Lee 2011 OSU PostRock (check) 09-2411 HRW yes Ruby Lee 2011 AgriPro CJ 09-2412 HRW yes Kuby Lee AgriPro	RonL (check)	09-2403	HWW				KSU-Hays
Hatcher (check) 09-2405 HRW CSU CO04393 09-2406 HRW no CSU CO04499 09-2407 HRW no CSU OK Bullet (check) 09-2408 HRW no CSU Billings 09-2409 HRW yes OSU OK05526 09-2410 HRW yes Ruby Lee 2011 OSU PostRock (check) 09-2411 HRW yes AgriPro AgriPro	Tiger	09-2404	HWW	yes			KSU-Hays
CO04393 09-2406 HRW no CSU CO04499 09-2407 HRW no CSU OK Bullet (check) 09-2408 HRW NO OSU Billings 09-2409 HRW yes OSU OK05526 09-2410 HRW yes Ruby Lee 2011 OSU PostRock (check) 09-2411 HRW yes AgriPro AgriPro CJ 09-2412 HRW yes AgriPro AgriPro	-	09-2405	HRW	-			•
OK Bullet (check) 09-2408 HRW OSU Billings 09-2409 HRW yes OSU OK05526 09-2410 HRW yes Ruby Lee 2011 OSU PostRock (check) 09-2411 HRW yes AgriPro CJ 09-2412 HRW yes AgriPro	CO04393	09-2406	HRW	no			CSU
OK Bullet (check) 09-2408 HRW OSU Billings 09-2409 HRW yes OSU OK05526 09-2410 HRW yes Ruby Lee 2011 OSU PostRock (check) 09-2411 HRW yes AgriPro CJ 09-2412 HRW yes AgriPro	CO04499	09-2407	HRW	no			CSU
Billings 09-2409 HRW yes OSU OK05526 09-2410 HRW yes Ruby Lee 2011 OSU PostRock (check) 09-2411 HRW yes Ruby Lee 2011 OSU CJ 09-2412 HRW yes Yes AgriPro							
OK05526 09-2410 HRW yes Ruby Lee 2011 OSU PostRock (check) 09-2411 HRW AgriPro AgriPro CJ 09-2412 HRW yes AgriPro				ves			
PostRock (check)09-2411HRWAgriProCJ09-2412HRWyesAgriPro	•				Ruby Lee	2011	
CJ 09-2412 HRW yes AgriPro				,	,		
,				ves			-
	SY Gold (AP00x0100-51)	09-2413	HRW	yes	SY Gold	2010	AgriPro

09-2414 09-2415 09-2416	HRW HRW HRW	no ves	Judee	2011	MSU MSU
		-	ludee	2011	
09-2416	HRW	ves	ludee	2011	NACLI
		1	Junee	2011	MSU
09-2417	HRW				TAMU
09-2418	HRW	yes	TAM 113	2010	TAMU
09-2419	HRW				NU
09-2420	HRW	yes	McGill	2010	NU
09-2421	HRW	yes	Robidoux	2010	NU
)9-2418)9-2419)9-2420	09-2418 HRW 09-2419 HRW 09-2420 HRW	09-2418 HRW yes 09-2419 HRW 09-2420 HRW yes	09-2418 HRW yes TAM 113 09-2419 HRW 09-2420 HRW yes McGill	O9-2418 HRW yes TAM 113 2010 O9-2419 HRW 2010 O9-2420 HRW yes McGill 2010

2008						
Jagalene (check)	08-2401	HRW				AgriPro
Art	08-2402	HRW	yes			AgriPro
Hawken	08-2403	HRW	yes			AgriPro
NuDakota	08-2404	HRW	yes			AgriPro
Hatcher (check)	08-2405	HRW				CSU
Thunder CL	08-2406	HWW	yes	Thunder CL	2008	CSU
CO03W054	08-2407	HWW	yes	Snowmass		CSU
CO03064	08-2408	HRW	no			CSU
Danby (check)	08-2409	HWW				KSU-Hays
Tiger	08-2410	HWW	yes			KSU-Hays
Karl 92 (check)	08-2411	HRW				KSU-Manhattan
KS970093-8-9-#1	08-2412	HRW	yes	Everest	2009	KSU-Manhattan
OK Bullet (check)	08-2413	HRW				OSU
OK03305	08-2414	HRW	yes	Pete	2009	OSU
OK03522	08-2415	HRW	yes	Billings	2009	OSU
OK03825-5403-6	08-2416	HRW				OSU
Tandem (check)	08-2417	HRW	yes	STARS0601W	2006	SDSU
SD05W030	08-2418	HWW	no			SDSU

2007						
Hatcher (check)	07-2401	HRW				CSU
CO03W239	07-2402	HWW	yes	Thunder CL	2008	CSU
CO03W054	07-2403	HWW	yes	Snowmass		CSU
CO02W237	07-2404	HWW	no			CSU
Millennium (check)	07-2405	HRW				NU
NH03614	07-2406	HRW	yes	Settler CL	2008	NU
OK Bullet (check)	07-2407	HRW				OSU
OK00514-05806	07-2408	HRW	no			OSU
OK05737W	07-2409	HWW	no			OSU
OK03522	07-2410	HRW	yes	Billings	2009	OSU
OK02405	07-2411	HRW	no			OSU
Tandem (check)	07-2412	HRW				SDSU
SD98W175-1	07-2413	HRW	no			SDSU
SD01058	07-2414	HRW	no			SDSU
SD0111-9	07-2415	HRW	yes	Lyman	2008	SDSU
SD01273	07-2416	HRW	no			SDSU
Genou (check)	07-2417	HRW				MSU

Entry ID	Entry No.	1	Released	Release Name	Release Year	Program
MT0495	07-2418	HRW	no			MSU
MTS04114	07-2419	HRW	no			MSU
2006						
Overley (check)	06-2401	HRW				KSU-Manhattan
Fuller	06-2402	HRW	yes			KSU-Manhattan
KS990498-3-&~2	06-2403	HRW	no			KSU-Manhattan
KS970274-14*9	06-2404	HRW	no			KSU-Manhattan
Overley (check)	06-2405	HRW				Westbred
Smoky Hill	06-2406	HRW	yes			Westbred
Aspen	06-2407	HRW	yes			Westbred
Millennium (check)	06-2408	HRW	yes			NU
NW98S097	06-2409	HRW	yes	Anton	2008	NU
N02Y5117	06-2410	HRW	yes	Mace	2007	NU
NE01643	06-2411	HRW	yes	Overland	2007	NU
NE02584	06-2412	HRW	no	ovenana	2007	NU
OK Bullet (check)	06-2413	HRW	110			OSU
Duster	06-2414	HRW	yes			OSU
OK01420	06-2415	HRW	no			OSU
OK02405	06-2416	HRW	no			OSU
OK02522W	06-2417	HWW	yes	OK Rising	2008	OSU
Tandem (check)	06-2418	HRW	yes	on hising	2000	SDSU
SD96240-3-1	06-2419	HRW	no			SDSU
SD01122	06-2420	HRW	no			SDSU
SD01122 SD01W065	06-2421	HWW	no			SDSU
TAM 111 (check)	06-2422	HRW	110			TAMU
TAM 112	06-2423	HRW	yes			TAMU
TX01A5936	06-2424	HRW	no			TAMU
TX01D3232	06-2425	HRW	yes	TAM 304	2006	TAMU
TX01V5314	06-2426	HRW	yes	TAM 203	2007	TAMU
2005						
2005	05 3404	11014				6614
Akron (check)	05-2401	HRW		5	2006	CSU
CO00016	05-2402	HRW	yes	Ripper	2006	CSU
Jagger (check)	05-2403	HRW				KSU-Hays
2137	05-2404	HRW	yes			KSU-Hays
KS03HW6-6	05-2405	HWW	no	David		KSU-Hays
KS03HW158-1	05-2406	HWW	yes	RonL		KSU-Hays
Jagger (check)	05-2407	HRW				AgriPro
Neosho	05-2408	HRW	yes		2005	AgriPro
W03-20	05-2409	HRW	yes	Postrock	2005	AgriPro
Goodstreak (check)	05-2410	HRW				NU
Infinity CL	05-2411	HRW	yes			NU
OK Bullet (check)	05-2412	HRW		- .		OSU
OK93p656H3299-2c04	05-2413	HRW	yes	Duster	2006	OSU
OK01307	05-2414	HRW	no			OSU
OK03918C	05-2415	HRW	yes	Centerfield	2006	OSU
OK00611W	05-2416	HWW	no			OSU
Tandem (check)	05-2417	HRW				SDSU

Entry ID	Entry No.	Entry Class	Released	Release Name	Release Year	Program
Crimson	05-2418	HRW	yes			SDSU
SD97059-2	05-2419	HRW	no			SDSU
SD01W064	05-2420	HWW	no			SDSU
2004						
Jagger (check)	04-2401	HRW				KSU-Hays
2137	04-2402	HRW	yes			KSU-Hays
KS02HW34	04-2403	HWW	yes	Danby	2005	KSU-Hays
KS02HW35-5	04-2404	HWW	no			KSU-Hays
KS03HW158	04-2405	HWW	yes	RonL	2006	KSU-Hays
Antelope (check)	04-2406	HRW				NE-USDA-ARS
Arrowsmith	04-2407	HRW	yes			NE-USDA-ARS
NW99L7068	04-2408	HRW	no			NE-USDA-ARS
Millennium (check)	04-2409	HRW				NU
NE99495	04-2410	HRW	yes	NE99495	2005	NU
OK102 (check)	04-2411	HRW				OSU
OK00618W	04-2412	HWW	yes	Guymon	2005	OSU
OK99212	04-2413	HRW	no			OSU
OK00514	04-2414	HRW	yes	OK Bullet	2005	OSU
OK02909C	04-2415	HRW	yes	Okfield	2005	OSU
Tandem (check)	04-2416	HRW				SDSU
SD97W609	04-2417	HWW	yes	Alice	2006	SDSU
SD97538	04-2418	HRW	no			SDSU
SD98102	04-2419	HRW	yes	Darrell	2006	SDSU
2003						
Akron (check)	03-2401	HRW				CSU
CO980607	03-2402	HRW	yes	Hatcher	2004	CSU
CO00D007	03-2403	HRW	yes	Bond CL	2004	CSU
Jagger (check)	03-2404	HRW				KSU-Hays
			VOC			
2137	03-2405	HRW	yes			KSU-Hays
KS01HW152-6	03-2406	HWW	no			KSU-Hays
KS01HW152-6 KS01HW163-4	03-2406 03-2407	HWW HWW	-			KSU-Hays KSU-Hays
KS01HW152-6 KS01HW163-4 KS02HW34	03-2406 03-2407 03-2408	HWW HWW HWW	no	Danby	2005	KSU-Hays KSU-Hays KSU-Hays
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check)	03-2406 03-2407 03-2408 03-2409	HWW HWW HWW HRW	no no	Danby	2005	KSU-Hays KSU-Hays KSU-Hays KSU-Manhatta
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check) 2137	03-2406 03-2407 03-2408 03-2409 03-2410	HWW HWW HWW HRW HRW	no no yes yes	Danby	2005	KSU-Hays KSU-Hays KSU-Hays KSU-Manhattar KSU-Manhattar
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check) 2137 Overley	03-2406 03-2407 03-2408 03-2409 03-2410 03-2411	HWW HWW HWW HRW HRW	no no yes yes	Danby	2005	KSU-Hays KSU-Hays KSU-Hays KSU-Manhattan KSU-Manhattan KSU-Manhattan
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check) 2137 Overley KS940786-6-9	03-2406 03-2407 03-2408 03-2409 03-2410 03-2411 03-2412	HWW HWW HRW HRW HRW HRW	no no yes yes	Danby	2005	KSU-Hays KSU-Hays KSU-Hays KSU-Manhattar KSU-Manhattar KSU-Manhattar
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check) 2137 Overley KS940786-6-9 OK 102 (check)	03-2406 03-2407 03-2408 03-2409 03-2410 03-2411 03-2412 03-2413	HWW HWW HRW HRW HRW HRW HRW	no no yes yes yes no			KSU-Hays KSU-Hays KSU-Hays KSU-Manhattan KSU-Manhattan KSU-Manhattan SU-Manhattan OSU
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check) 2137 Overley KS940786-6-9 OK 102 (check) OK94P549-11	03-2406 03-2407 03-2408 03-2409 03-2410 03-2411 03-2412 03-2413 03-2414	HWW HWW HRW HRW HRW HRW HRW	no no yes yes no yes	Endurance	2004	KSU-Hays KSU-Hays KSU-Hays KSU-Manhattar KSU-Manhattar KSU-Manhattar OSU OSU
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check) 2137 Overley KS940786-6-9 OK 102 (check) OK94P549-11 OK98690	03-2406 03-2407 03-2408 03-2409 03-2410 03-2411 03-2412 03-2413 03-2414 03-2415	HWW HWW HRW HRW HRW HRW HRW HRW	no no yes yes yes no			KSU-Hays KSU-Hays KSU-Hays KSU-Manhattan KSU-Manhattan KSU-Manhattan OSU OSU OSU
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check) 2137 Overley KS940786-6-9 OK 102 (check) OK94P549-11 OK98690 Crimson (check)	03-2406 03-2407 03-2408 03-2409 03-2410 03-2411 03-2412 03-2413 03-2414 03-2415 03-2416	HWW HWW HRW HRW HRW HRW HRW HRW HRW	no no yes yes no yes yes	Endurance Deliver	2004 2004	KSU-Hays KSU-Hays KSU-Manhattar KSU-Manhattar KSU-Manhattar KSU-Manhattar OSU OSU OSU SDSU
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check) 2137 Overley KS940786-6-9 OK 102 (check) OK94P549-11 OK98690 Crimson (check) SD97W604	03-2406 03-2407 03-2408 03-2409 03-2410 03-2411 03-2412 03-2413 03-2414 03-2415 03-2416 03-2417	HWW HWW HRW HRW HRW HRW HRW HRW HRW HRW	no no yes yes no yes yes yes	Endurance	2004	KSU-Hays KSU-Hays KSU-Manhattan KSU-Manhattan KSU-Manhattan KSU-Manhattan OSU OSU OSU SDSU SDSU
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check) 2137 Overley KS940786-6-9 OK 102 (check) OK94P549-11 OK98690 Crimson (check)	03-2406 03-2407 03-2408 03-2409 03-2410 03-2411 03-2412 03-2413 03-2414 03-2415 03-2416	HWW HWW HRW HRW HRW HRW HRW HRW HRW	no no yes yes no yes yes	Endurance Deliver	2004 2004	KSU-Hays KSU-Hays KSU-Manhattau KSU-Manhattau KSU-Manhattau KSU-Manhattau OSU OSU OSU SDSU
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check) 2137 Overley KS940786-6-9 OK 102 (check) OK94P549-11 OK98690 Crimson (check) SD97W604 SD92107-5	03-2406 03-2407 03-2408 03-2409 03-2410 03-2411 03-2412 03-2413 03-2414 03-2415 03-2416 03-2417	HWW HWW HRW HRW HRW HRW HRW HRW HRW HRW	no no yes yes no yes yes yes	Endurance Deliver	2004 2004	KSU-Hays KSU-Hays KSU-Manhattan KSU-Manhattan KSU-Manhattan KSU-Manhattan OSU OSU OSU SDSU SDSU
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check) 2137 Overley KS940786-6-9 OK 102 (check) OK94P549-11 OK98690 Crimson (check) SD97W604 SD92107-5	03-2406 03-2407 03-2408 03-2409 03-2410 03-2411 03-2412 03-2413 03-2414 03-2415 03-2416 03-2417 03-2418	HWW HWW HRW HRW HRW HRW HRW HRW HRW HRW	no no yes yes no yes yes yes	Endurance Deliver	2004 2004	KSU-Hays KSU-Hays KSU-Manhattar KSU-Manhattar KSU-Manhattar KSU-Manhattar OSU OSU OSU SDSU SDSU SDSU
KS01HW152-6 KS01HW163-4 KS02HW34 Jagger (check) 2137 Overley KS940786-6-9 OK 102 (check) OK94P549-11 OK98690 Crimson (check) SD97W604 SD92107-5	03-2406 03-2407 03-2408 03-2409 03-2410 03-2411 03-2412 03-2413 03-2414 03-2415 03-2416 03-2417	HWW HWW HRW HRW HRW HRW HRW HRW HRW HRW	no no yes yes no yes yes yes	Endurance Deliver	2004 2004	KSU-Hays KSU-Hays KSU-Manhattar KSU-Manhattar KSU-Manhattar KSU-Manhattar OSU OSU OSU SDSU SDSU

Entry ID	Entry No.	Entry Class	Released	Release Name	Release Year	Program
Jagalene	02-2404	HRW	yes			AgriPro
G1878 (check)	02-2405	HRW				Cargill
G980723	02-2406	HRW	no			Cargill
G970252W	02-2407	HWW	no			Cargill
Prowers (check)	02-2408	HRW				CSU
CO980376	02-2409	HRW	no			CSU
CO980607	02-2410	HRW	yes	Hatcher	2004	CSU
CO980630	02-2411	HRW	no			CSU
Jagger (check)	02-2412	HRW				KSU-Manhattar
KS940748-2-2	02-2413	HRW	no			KSU-Manhattar
KS940786-6-7	02-2414	HRW	yes	Overley	2003	KSU-Manhattar
KS940786-6-9	02-2415	HRW	no			KSU-Manhattar
Millennium (check)	02-2416	HRW				NU
NE97V121	02-2417	HRW	no			NU
NE98466	02-2418	HRW	no			NU
NE98471	02-2419	HRW	yes	Hallam	2004	NU
NI98439	02-2420	HRW	no			NU
2174 (check)	02-2421	HRW				OSU
OK102	02-2422	HRW	yes			OSU
OK95548-54	02-2423	HRW	no			OSU
OK95616-56	02-2424	HRW	no			OSU
OK96705-38	02-2425	HRW	no			OSU
OK98699	02-2426	HRW	no			OSU
2001						
Jagger (check)	01-2401	HRW				Cargill
G970380A	01-2402	HRW	no			Cargill
G970209W	01-2403	HWW	no			Cargill
Prowers 99 (check)	01-2404	HRW				CSU
CO970547	01-2405	HRW	no			CSU
Millennium (check)	01-2406	HRW				NU
	01-2407	HRW	no			NU
NE97426						
NE97426 NE97465	01-2408	HRW	yes	Goodstreak	2002	NU
			yes yes	Goodstreak Empire	2002 2002	NU NU
NE97465	01-2408	HRW	-			
NE97465 NE97638	01-2408 01-2409	HRW HRW	yes no			NU
NE97465 NE97638 NE97669 NE97689	01-2408 01-2409 01-2410	HRW HRW HRW	yes	Empire	2002	NU NU
NE97465 NE97638 NE97669	01-2408 01-2409 01-2410 01-2411	HRW HRW HRW HRW	yes no	Empire	2002	NU NU NU

Thank you for reviewing this report of 2022 WQC Hard Winter Wheat milling and baking. Please let me know if you have any comments on this report. I can be reached at (785)776-2750 or by email, <u>Richard.chen@usda.gov</u>